Science China Information Sciences

, Volume 58, Issue 9, pp 1–13 | Cite as

Image composite authentication using a single shadow observation

Research Paper
  • 178 Downloads

Abstract

The paper presents a novel method for image composite authentication based on a single shadow in an outdoor image. Existing methods based on the shadow geometry consistency involve more than two shadow observations. We relax the requirement of two shadow observations in the same scene. As a trade-off, we use the information in EXIF (Exchangeable Image File) based on which the ground truth sun elevation is calculated. We also estimate the sun elevation based on geometric constraints the scene provides, whose consistency serves as the cue to authenticate image forgery. It is the first attempt, to our best knowledge, to make use of sun elevation with shadow of one object to authenticate outdoor images. Also, the novel use of GPS (Global Positioning System), and Date and Time data of captured image makes image forensics possible even in one image containing a single shadow. Experimental results on both the synthetic data and visually plausible images demonstrate the performance of the proposed method.

Keywords

image forensics solar shadow sun elevation exchangeable image file geometry-based technique 

基于单观测阴影的图像合成验证

抽象

创新点

传统基于几何约束的取证方法需要从图像中提取两个或者更多的阴影来验证图像真伪, 但是文本提出了一种使用图像中一个阴影, 结合图像 EXIF (可交换图像文件) 信息的方法达到图像取证的目的.本方法首先根据图像中的几何约束计算太阳高度角, 选取图像中两组平行线分别计算其灭点得到平面水平线, 采集图像中物体及其阴影的始末坐标点计算光源位置, 结合相机得到太阳高度角; 其次, 根据 EXIF 信息中提供的拍摄日期时间计算时间角度, 再结合 EXIF 中提供的拍摄地点的经纬度可以计算太阳天体角度; 最后, 在对图像中物体及其阴影的始末点进行采集时, 每个点均采集 5 次, 因此共形成 125 个角度, 通过计算 125 个角度均值的置信概率求得图像的真实性概率.

关键词

图像取证 太阳阴影 太阳验证 可交换图形文件 基于几何的取证技术 
092110 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang H, Fan M. Centroid-based semi-fragile audio watermarking in hybrid domain. Sci China Inf Sci, 2010, 53: 619–633CrossRefMATHGoogle Scholar
  2. 2.
    Zhao Y, Ni R, Zhu Z. RST transforms resistant image watermarking based on centroid and sector-shaped partition. Sci China Inf Sci, 2012, 55: 650–662MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cox I, Miller M, Bloom J. Digital Watermarking. Morgan Kaufmann Publishers, 2002Google Scholar
  4. 4.
    Zhu G, Huang J, Kwong S, et al. Fragility analysis of adaptive quantization-based image hashing. IEEE Trans Inf Forensics Secur, 2010, 5: 133–147CrossRefGoogle Scholar
  5. 5.
    Jain A K, Uludag U. Hiding biometric data. IEEE Trans Patt Anal Mach Intell, 2003, 25: 1494–1498CrossRefGoogle Scholar
  6. 6.
    Li J, Li X, Yang B, et al. Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensics Secur, 2015, 10: 507–518CrossRefMATHGoogle Scholar
  7. 7.
    Xia Z, Wang X, Sun X, et al. Steganalysis of least significant bit matching using multi-order differences. Secur Commun Netw, 2014, 7: 1283–1291CrossRefGoogle Scholar
  8. 8.
    Xia Z, Wang X, Sun X, et al. Steganalysis of LSB matching using differences between nonadjacent pixels. Multimedia Tools Appl, 2014, doi: 10.1007/s11042-014-2381-8Google Scholar
  9. 9.
    Farid H. A survey of image forgery detection. IEEE Signal Process Mag, 2009, 2: 16–25CrossRefGoogle Scholar
  10. 10.
    Hartley R, Zisserman A. Multiple View Geometry in Computer Vision. Cambridge: Cambridge University Press, 2004CrossRefMATHGoogle Scholar
  11. 11.
    Lv F, Zhao T, Nevatia R. Camera calibration from video of a walking human. IEEE Trans Patt Anal Mach Intell, 2006, 28: 1513–1518CrossRefGoogle Scholar
  12. 12.
    Criminisi A, Reid I, Zisserman A. Single view metrology. Int J Comput Vis, 2000, 40: 123–148CrossRefMATHGoogle Scholar
  13. 13.
    Kim J S, Gurdjos P, Kweon I S. Geometric and algebraic constraints of projected concentric circles and their applications to camera calibration. IEEE Trans Patt Anal Mach Intell, 2005, 27: 637–642CrossRefGoogle Scholar
  14. 14.
    Guo F, Chellappa R. Video metrology using a single camera. IEEE Trans Patt Anal Mach Intell, 2010, 32: 1329–1335CrossRefGoogle Scholar
  15. 15.
    Cham T J, Ciptadi A, Tan W, et al. Estimating camera pose from a single urban ground-view omnidirectional image and a 2D building outline map. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, 2010. 366–373Google Scholar
  16. 16.
    Wu L, Cao X, Foroosh H. Camera calibration and geo-location estimation from two shadow trajectories. Comput Vis Image Understand, 2010, 114: 915–927CrossRefGoogle Scholar
  17. 17.
    Farid H, Bravo M J. Image forensic analyses that elude the human visual system. In: Proceedings of SPIE Symposium on Electronic Imaging, San Jose, 2010. 754106Google Scholar
  18. 18.
    Johnson M K, Farid H. Detecting photographic composites of people. In: Proceedings of International Workshop on Digital Watermarking, Guangzhou, 2007. 19–33Google Scholar
  19. 19.
    Vab Gool L, Proesmans M, Zisserman A. Planar homologies as a basis for grouping and recognition. Image Vis Comput, 1998, 16: 21–26CrossRefGoogle Scholar
  20. 20.
    Jacobs N, Bies B, Pless R. Using cloud shadows to infer scene structure and camera calibration. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, 2010. 1102–1109Google Scholar
  21. 21.
    Santos P, Dee H M, Fenelon V. Notes on a qualitative theory of shadows. In: Proceedings of Cognitive Robotics workshop at ECAI, Patras, 2008. 47–54Google Scholar
  22. 22.
    Matthew A, Bosse M. Calibration of outdoor cameras from cast shadows. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Hague, 2004. 3040–3045Google Scholar
  23. 23.
    Wu L, Cao X. Geo-location estimation from two shadow trajectories. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, 2010. 585–590Google Scholar
  24. 24.
    Cao X, Foroosh H. Camera calibration and light source orientation from solar shadows. Comput Vis Image Understand, 2007, 105: 60–72CrossRefGoogle Scholar
  25. 25.
    Zhang W, Cao X, Zhang J, et al. Detecting photographic composites using shadows. In: Proceedings of IEEE International Conference on Multimedia and Expo, New York City, 2009. 1042–1045Google Scholar
  26. 26.
    Junejo I N, Foroosh H. Estimating geo-temporal location of stationary cameras using shadow trajectories. In: Proceedings of European Conference on Computer Vision, Marseille, 2008. 318–331Google Scholar
  27. 27.
    Hays J, Efros A A. IM2GPS: estimating geographic information from a single image. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, 2008. 1–8Google Scholar
  28. 28.
    Kee E, O’Brien J, Farid H. Exposing photo manipulation with inconsistent shadows. ACM Trans Graph, 2013, 32: 2956–2067CrossRefGoogle Scholar
  29. 29.
    Kee E, O’Brien J, Farid H. Exposing photo manipulation from shading and shadows. ACM Trans Graph, 2014, 33: 165–185CrossRefGoogle Scholar
  30. 30.
    Kakar P, Sudha N. Verifying temporal data in geotagged images via sun azimuth estimation. IEEE Trans Inf Forensics Secur, 2012, 7: 1029–1039CrossRefGoogle Scholar
  31. 31.
    Cao X, Shen Y, Shah M, et al. Single view compositing with shadows. Vis Comput, 2005, 21: 639–648CrossRefGoogle Scholar
  32. 32.
    Agarwal S, Snavely N, Simon I, et al. Building Rome in a day. In: Proceedings of IEEE International Conference on Computer Vision, Kyoto, 2009. 72–79Google Scholar
  33. 33.
    Hoiem D, Efros A E, Hebert M. Recovering surface layout from an image. Int J Comput Vis, 2007, 75: 151–172CrossRefGoogle Scholar
  34. 34.
    Gioi R G, Jakubowicz J, Morel J M, et al. LSD: a fast line segment detector with a false detection control. IEEE Trans Patt Anal Mach Intell, 2010, 32: 722–732CrossRefGoogle Scholar
  35. 35.
    Aggarwal N, Karl W C. Line detection in images through regularized Hough transform. IEEE Trans Patt Anal Mach Intell, 2006, 15: 582–591Google Scholar
  36. 36.
    Lalonde J F, Efros A A, Narasimhan S G. Estimating natural illumination from a single outdoor image. In: Proceedings of IEEE International Conference on Computer Vision, Kyoto, 2009. 183–190Google Scholar
  37. 37.
    Rohr R R J. Sundials: History, Theory, and Practice. New York: Dover, 1996Google Scholar
  38. 38.
    Waugh A. Sundials: Their Theory and Construction. New York: Dover, 1973Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.School of Computer Science and TechnologyTianjinChina
  3. 3.Department of Computer ScienceCity University of Hong KongHong KongChina

Personalised recommendations