Advertisement

Science China Information Sciences

, Volume 58, Issue 4, pp 1–20 | Cite as

Key techniques for 5G wireless communications: network architecture, physical layer, and MAC layer perspectives

  • Zheng Ma
  • ZhengQuan ZhangEmail author
  • ZhiGuo Ding
  • PingZhi Fan
  • HengChao Li
Review

Abstract

The fourth generation (4G) mobile communication systems are offering service worldwide steadily. Although 4G systems could be loaded with much more services and data than previous systems, there is still a dramatic gap between the people’s practical requirements and what can be offered by the 4G technologies. Consequently, the research and development for the fifth generation (5G) systems have already been started. This article presents an overview of potential network architecture and highlights several promising techniques which could be employed in the future 5G systems. These techniques include non-orthogonal multiple access (NOMA), massive multiple input and multiple output (MIMO), cooperative communications and network coding, full duplex (FD), device-to-device (D2D) communications, millimeter wave communications, automated network organization, cognitive radio (CR), and green communications. The state-of-art and implementation issue of these techniques are also addressed.

Keywords

5G software defined network non-orthogonal multiple access massive MIMO full duplex device-to-device communications millimeter wave communications cognitive radio 

5G 无线通信关键技术概述: 网络架构, 物理层和 MAC 层的技术

关键词

5G 软件定义网络 非正交多址接入 大规模多输入多输出 全双工 设备间通信 毫米波通信 认知无线电 
041301 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    You X H, Körner U. Preface. Sci China Inf Sci, 2013, 56: 020300CrossRefGoogle Scholar
  2. 2.
    Li Q C, Niu H N, Papathanassiou A T, et al. 5G network capacity: key elements and technologies. IEEE Veh Technol Mag, 2014, 9: 71–78CrossRefGoogle Scholar
  3. 3.
    Wang C X, Haider F, Gao X Q, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag, 2014, 52: 122–130CrossRefGoogle Scholar
  4. 4.
    Tehrani M N, Uysal M, Yanikomeroglu H. Device-to-device communication in 5G cellular networks, challenges, solutions, and future directions. IEEE Commun Mag, 2014, 52: 86–92CrossRefGoogle Scholar
  5. 5.
    Alexiou A. Wireless world 2020: radio interface challenges and technology enablers. IEEE Veh Technol Mag, 2014, 9: 46–53CrossRefGoogle Scholar
  6. 6.
    ONF. White Paper on Software-Defined Networking: the New Norm for Networks, 2012Google Scholar
  7. 7.
    China Mobile Research Institute. White Paper on C-RAN: the Road Towards Green RAN Version 2.5, 2011Google Scholar
  8. 8.
    Chang G K, Liu C, Zhang L. Architecture and applications of a versatile small-cell, multi-service cloud radio access network using radio-over-fiber technologies. In: Proceedings of IEEE International Conference on Communications Workshops, Budapest, 2013. 879–883Google Scholar
  9. 9.
    Sabella D, Rost P, Sheng Y L, et al. RAN as a service: challenges of designing a flexible RAN architecture in a cloud-based heterogeneous mobile network. In: Proceedings of Future Network and Mobile Summit, Lisboa, 2013. 1–8Google Scholar
  10. 10.
    Rost P, Bernardos C J, Domenico A D, et al. Cloud technologies for flexible 5G radio access networks. IEEE Commun Mag, 2014, 52: 68–76CrossRefGoogle Scholar
  11. 11.
    Ishii H, Kishiyama Y, Takahashi H. A novel architecture for LTE-B: C-plane/U-plane split and phantom cell concept. In: Proceedings of IEEE Globecom Workshops, Anaheim, 2012. 624–630Google Scholar
  12. 12.
    Ben Hadj Said S, Sama M R, Guillouard K, et al. New control plane in 3GPP LTE/EPC architecture for on-demand connectivity service. In: Proceedings of IEEE 2nd International Conference on Cloud Networking, San Francisco, 2013. 205–209Google Scholar
  13. 13.
    Wang Z X, Zhang W Y. A separation architecture for achieving energy-efficient cellular networking. IEEE Trans Wirel Commun, 2014, 13: 3113–3123CrossRefGoogle Scholar
  14. 14.
    Bernardos C J, de la Oliva A, Serrano P, et al. An architecture for software defined wireless networking. IEEE Wirel Commun, 2014, 21: 52–61CrossRefGoogle Scholar
  15. 15.
    Costa-Requena J. SDN integration in LTE mobile backhaul networks. In: Proceedings of International Conference on Information Networking, Phuket, 2014. 264–269Google Scholar
  16. 16.
    Saito Y, Benjebbour A, Kishiyama Y, et al. System level performance evaluation of downlink non-orthogonal multiple access (NOMA). In: Proceedings of IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications, London, 2013. 611–615Google Scholar
  17. 17.
    Nikopour H, Baligh H. Sparse code multiple access. In: Proceedings of IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications, London, 2013. 332–336Google Scholar
  18. 18.
    Cover T, Thomas J. Elements of Information Theory. 6th ed. New York: Wiley and Sons, 1991zbMATHCrossRefGoogle Scholar
  19. 19.
    Ding Z G, Yang Z, Fan P Z, et al. On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process Lett, 2014, 21: 1501–1505CrossRefGoogle Scholar
  20. 20.
    Larsson E G, Edfors O, Tufvesson F, et al. Massive MIMO for next generation wireless systems. IEEE Commun Mag, 2014, 52: 186–195CrossRefGoogle Scholar
  21. 21.
    Rusek F, Persson D, Lau B K, et al. Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process Mag, 2013, 30: 40–60CrossRefGoogle Scholar
  22. 22.
    Yin H, Gesbert D, Filippou M, et al. A coordinated approach to channel estimation in large-scale multiple-antenna systems. IEEE J Sel Area Commun, 2013, 31: 264–273CrossRefGoogle Scholar
  23. 23.
    Ngo H Q, Larsson E G. EVD-based channel estimations for multicell multiuser MIMO with very large antenna arrays. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, 2012. 1520–6149Google Scholar
  24. 24.
    Ma Z, Persson D, Larsson E G, et al. Multiple symbols soft-decision metrics for coded frequency-shift keying signals. Sci China Inf Sci, 2013, 56: 022305MathSciNetGoogle Scholar
  25. 25.
    Ashikhmin A, Marzetta T L. Pilot contamination precoding in multi-cell large scale antenna systems. In: Proceedings of IEEE International Symposium on Information Theory, Cambridge, 2012. 1137–1141Google Scholar
  26. 26.
    Gong J, Zhou S, Lau B K, et al. On precoding for overlapped clustering in a measured urban macrocellular environment. Sci China Inf Sci, 2013, 56: 022301CrossRefGoogle Scholar
  27. 27.
    Hou X Y, Yang C Y, Lau B K. On channel quantization for multi-cell cooperative systems with limited feedback. Sci China Inf Sci, 2013, 56: 022308MathSciNetGoogle Scholar
  28. 28.
    3GPP TS 36.216 V10.0.0. Physical layer for relaying operation, 2010Google Scholar
  29. 29.
    Ding L H, Wu P, Wang H, et al. Lifetime maximization routing with network coding in wireless multihop networks. Sci China Inf Sci, 2013, 56: 022303MathSciNetGoogle Scholar
  30. 30.
    Xie G, Liu Y A, Gao J C, et al. Sort-based relay selection algorithm for decode-and-forward relay system. Sci China Inf Sci, 2013, 56: 022304MathSciNetGoogle Scholar
  31. 31.
    Larsson P, Rong H. Large-scale cooperative relay network with optimal coherent combining under aggregate relay power constraints. In: Proceedings of the Working Group 4, World Wireless Research Forum WWRFS meeting, Beijing, 2004Google Scholar
  32. 32.
    Jing Y D, Hassibi B. Distributed space-time coding in wireless relay networks. IEEE Trans Wirel Commun, 2006, 5: 3524–3536CrossRefGoogle Scholar
  33. 33.
    Guo X, Xia X G. A distributed space-time coding in asynchronous wireless relay networks. IEEE Trans Wirel Commun, 2008, 7: 1812–1816CrossRefGoogle Scholar
  34. 34.
    Nazer B, Gastpar M. Reliable physical layer network coding. Proc IEEE, 2011, 99: 438–460CrossRefGoogle Scholar
  35. 35.
    Samsung. Application of network coding in LTE-advanced relay. 3GPP TSG-RAN WG1 #53b, R1-082327, Warsaw, 2008Google Scholar
  36. 36.
    Yu X B, Zhou T T, Rui Y, et al. Cross-layer design for cooperative MIMO systems with relay selection and imperfect CSI. Sci China Inf Sci, 2013, 56: 022312MathSciNetGoogle Scholar
  37. 37.
    Osseiran A, Doppler K, Ribeiro C, et al. Advances in device-to-device communications and network coding for IMT-advanced. In: Proceedings of ICT-MobileSummit Conference, Santander, 2009. 1–8Google Scholar
  38. 38.
    Wu Y, Zheng M, Fei Z S, et al. Outage probability analysis for superposition coded symmetric relaying. Sci China Inf Sci, 2013, 56: 022307MathSciNetGoogle Scholar
  39. 39.
    Lin D S, Xiao M, Li S Q. Packet combining based on cross-packet coding. Sci China Inf Sci, 2013, 56: 022302MathSciNetCrossRefGoogle Scholar
  40. 40.
    Erez U, Zamir R. Achieving 1/2 log(1+SNR) on the AWGN channel with lattice encoding and decoding. IEEE Trans Inform Theory, 2004, 50: 2293–2314zbMATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Nazer B, Gastpar M. Compute-and-forward: Harnessing interference through structured codes. IEEE Trans Inform Theory, 2011, 57: 6463–6486MathSciNetCrossRefGoogle Scholar
  42. 42.
    Wilson M P, Narayanan K, Pfister H, et al. Joint physical layer coding and network coding for bidirectional relaying. IEEE Trans Inform Theory, 2010, 11: 5641–5654MathSciNetCrossRefGoogle Scholar
  43. 43.
    Nazer B, Gastpar M. Computation over multiple-access channels. IEEE Trans Inform Theory, 2007, 53: 3498–3516MathSciNetCrossRefGoogle Scholar
  44. 44.
    Manssour J, Osseiran A, Slimane S B. Wireless network coding in multi-cell networks: analysis and performance. In: Proceedings of IEEE International Conference on Signal Processing and Communication Systems, Gold Coast, 2008, 1–6Google Scholar
  45. 45.
    Manssour J, Osseiran A, Slimane S B. Opportunistic relay selection for wireless network coding. In: Proceedings of IEEE 9th Malaysia International Conference on Communications, Kuala Lumpur, 2009. 102–106Google Scholar
  46. 46.
    Hausl C, Hagenauer J. Iterative network and channel decoding for the two-way relay channel. In: Proceedings of IEEE International Conference on Communications, Istanbul, 2006. 1568–1573Google Scholar
  47. 47.
    Hausl C, Schreckenbach F, Oikonomidis I, et al. Iterative network and channel decoding on a tanner graph. In: Proceedings of the 43rd Allerton Conference on Communication, Control, and Computing, Monticello, 2005. 2093–2102Google Scholar
  48. 48.
    Yang S C, Koetter R. Network coding over a noisy relay: a belief propagation approach. In: Proceedings of IEEE International Symposium on Information Theory, Nice, 2007. 801–804Google Scholar
  49. 49.
    Zhang S L, Liew S C. Channel coding and decoding in a relay system operated with physical-layer network coding. IEEE J Sel Area Commun, 2009, 27: 788–796CrossRefGoogle Scholar
  50. 50.
    Choiy J I, Jainy M, Srinivasany K, et al. Achieving single channel, full duplex wireless communication. In: Proceedings of ACM Annual International Conference on Mobile Computing and Networking, Chicago, 2010. 1–12Google Scholar
  51. 51.
    Haneda K, Kahra E, Wyne S, et al. Measurement of loop-back interference channels for outdoor-to-indoor full-duplex radio relays. In: Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, 2010. 1–5Google Scholar
  52. 52.
    Riihonen T, Werner S, Wichman R. Mitigation of loopback self-interference in full-duplex MIMO relays. IEEE Trans Signal Process, 2011, 59: 5983–5993MathSciNetCrossRefGoogle Scholar
  53. 53.
    Hua Y B, Liang P, Ma Y M, et al. A method for broadband full-duplex MIMO radio. IEEE Signal Process Lett, 2012, 19: 793–796CrossRefGoogle Scholar
  54. 54.
    Knox M E. Single antenna full duplex communications using a common carrier. In: Proceedings of IEEE 13th Annual Wireless and Microwave Technology Conference, Cocoa Beach, 2012. 1–6Google Scholar
  55. 55.
    Duarte M, Sabharwal A. Full-duplex wireless communications using off-the-shelf radios: feasibility and first results. In: Proceedings of Forty Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2010. 1558–1562Google Scholar
  56. 56.
    Phungamngern N, Uthansakul P, Uthansakul M. Digital and RF interference cancellation for single-channel fullduplex transceiver using a single antenna. In: Proceedings of 10th International Conference on Electrical Engineering/ Electronics, Computer, Telecommunications and Information Technology, Krabi, 2013. 1–5Google Scholar
  57. 57.
    McMichael J G, Kolodziej K E. Optimal tuning of analog self-interference cancellers for full-duplex wireless communication. In: Proceedings of 50th Annual Allerton Conference on Communication, Control, and Computing, Allerton, 2012. 246–251Google Scholar
  58. 58.
    Jain M, Choi J I, Kim T, et al. Practical, real-time, full duplex wireless. In: Proceedings of ACM Annual International Conference on Mobile Computing and Networking, Las Vegas, 2011. 3018–312Google Scholar
  59. 59.
    Brett K, Jorma L, Behnaam A. An analog baseband approach for designing full-duplex radios. In: Proceedings of 2013 Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2013. 987–991Google Scholar
  60. 60.
    Li S H, Murch R D. Full-duplex wireless communication using transmitter output based echo cancellation. In: Proceedings of IEEE Global Telecommunications Conference, Houston, 2011. 1–5Google Scholar
  61. 61.
    Li N, Zhu W H, Han H H. Digital interference cancellation in single channel, full duplex wireless communication. In: Proceedings of 8th International Conference on Wireless Communications, Networking and Mobile Computing, Shanghai, 2012. 1–4Google Scholar
  62. 62.
    Ahmed E, Eltawil A M, Sabharwal A. Self-interference cancellation with phase noise induced ICI suppression for full-duplex systems. In: Proceedings of IEEE Global Telecommunications Conference, Atlanta, 2013. 3384–3388Google Scholar
  63. 63.
    Anttila L, Korpi D, Syrjala V, et al. Cancellation of power amplifier induced nonlinear self-interference in full-duplex transceivers. In: Proceedings of Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2013. 1193–1198Google Scholar
  64. 64.
    Ahmed E, Eltawil A M, Sabharwal A. Self-interference cancellation with nonlinear distortion suppression for fullduplex systems. In: Proceedings of Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2013. 1199–1203Google Scholar
  65. 65.
    Korpi D, Anttila L, Syrjala V, et al. Widely-linear digital self-interference cancellation in direct-conversion full-duplex transceiver. IEEE J Sel Area Commun, 2014, 32: 1674–1687CrossRefGoogle Scholar
  66. 66.
    Korpi D, Anttila L, Valkama M. Feasibility of in-band full-duplex radio transceivers with imperfect RF components: analysis and enhanced cancellation algorithms. In: Proceedings of 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Oulu, 2014. 532–538Google Scholar
  67. 67.
    Everett E, Sahai A, Sabharwal A. Passive self-interference suppression for full-duplex infrastructure nodes. IEEE Trans Wirel Commun, 2014, 13: 680–694CrossRefGoogle Scholar
  68. 68.
    van Liempd B, Debaillie B, Craninckx J, et al. RF self-interference cancellation for full-duplex. In: Proceedings of 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Oulu, 2014. 526–531Google Scholar
  69. 69.
    Ahmed E, Eltawil A M, Sabharwal A. Rate gain region and design tradeoffs for full-duplex wireless communications. IEEE Trans Wirel Commun, 2013, 12: 3556–3565CrossRefGoogle Scholar
  70. 70.
    Li W, Lilleberg J, Rikkinen K. On rate region analysis of half- and full-duplex OFDM communication links. IEEE J Sel Area Commun, 2014, 32: 1688–1698CrossRefGoogle Scholar
  71. 71.
    Day B.P, Margetts A R, Bliss D W, et al. Full-duplex bidirectional MIMO: achievable rates under limited dynamic range. IEEE Trans Signal Process, 2012, 60: 3702–3713MathSciNetCrossRefGoogle Scholar
  72. 72.
    Cirik A, Rong Y, Hua Y. Achievable rates of full-duplex MIMO radios in fast fading channels with imperfect channel estimation. IEEE Trans Signal Process, 2014, 62: 3874–3886MathSciNetCrossRefGoogle Scholar
  73. 73.
    Nguyen D, Tran L N, Pirinen P, et al. Precoding for full duplex multiuser MIMO systems: spectral and energy efficiency maximization. IEEE Trans Signal Process, 2013, 61: 4038–4050MathSciNetCrossRefGoogle Scholar
  74. 74.
    Vaze C, Varanasi M. The degrees of freedom of MIMO networks with full-duplex receiver cooperation but no CSIT. IEEE Trans Inform Theory, 2014, 60: 5587–5596MathSciNetCrossRefGoogle Scholar
  75. 75.
    Nguyen D, Tran L N, Pirinen P, et al. Transmission strategies for full duplex multiuser MIMO systems. In: Proceedings of IEEE International Conference on Communications, Ottawa, 2012. 6825–6829Google Scholar
  76. 76.
    Goyal S, Liu P, Hua S, et al. Analyzing a full-duplex cellular system. In: Proceedings of 47th Annual Conference on Information Sciences and Systems, Baltimore, 2013. 1–6Google Scholar
  77. 77.
    3GPP TR 23.703 V12.0.0. Study on architecture enhancements to support proximity-based services (ProSe), 2014Google Scholar
  78. 78.
    3GPP TR 36.843 V12.0.1. Study on LTE device to device proximity services; radio aspects, 2014Google Scholar
  79. 79.
    Wei L L, Hu R Q, Qian Y, et al. Enable device-to-device communications underlaying cellular networks: challenges and research aspects. IEEE Commun Mag, 2014, 52: 90–96CrossRefGoogle Scholar
  80. 80.
    Janis P, Yu C H, Doppler K, et al. Device-to-device communication underlaying cellular communications systems. Int J Commun Netw Syst Sci, 2009, 2: 169–178Google Scholar
  81. 81.
    ITU-R P.676-10. Attenuation by atmospheric gases, 2013Google Scholar
  82. 82.
    Ben-Dor E, Rappaport T S, Qiao Y, et al. Millimeter wave 60 GHz outdoor and vehicle AOA propagation measurements using a broadband channel sounder. In: Proceedings of IEEE Global Telecommunications Conference, Houston, 2011. 1–6Google Scholar
  83. 83.
    Rappaport T S, Ben-Dor E, Murdock J, et al. 38 GHz and 60 GHz angle-dependent propagation for cellular & peerto-peer wireless communications. In: Proceedings of IEEE International Conference on Communications, Ottawa, 2012. 4568–4573Google Scholar
  84. 84.
    Rappaport T S, Sun S, Mayzus R, et al. Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access, 2013, 1: 335–349CrossRefGoogle Scholar
  85. 85.
    Rappaport T S, Gutierrez F, Ben-Dor E, et al. Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Trans Antenn Propag, 2013, 61: 1850–1859CrossRefGoogle Scholar
  86. 86.
    Zhao H, Mayzus R, Sun S, et al. 28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York city. In: Proceedings of IEEE International Conference on Communications, Budapest, 2013. 5163–5167Google Scholar
  87. 87.
    Azar Y, Wong G N, Wang K, et al. 28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York city. In: Proceedings of IEEE International Conference on Communications, Budapest, 2013. 5143–5147Google Scholar
  88. 88.
    Hur S Y, Kim T J, Love D J, et al. Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans Commun, 2013, 61: 4391–4403CrossRefGoogle Scholar
  89. 89.
    Roh W, Seol J Y, Park J, et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun Mag, 2014, 52: 106–113CrossRefGoogle Scholar
  90. 90.
    Choi J. On coding and beamforming for large antenna arrays in mm-wave systems. IEEE Wirel Commun Lett, 2014, 3: 193–196CrossRefGoogle Scholar
  91. 91.
    Wang H, Liu N, Li Z H, et al. A unified algorithm for mobility load balancing in 3GPP LTE multi-cell networks. Sci China Inf Sci, 2013, 56: 022311MathSciNetGoogle Scholar
  92. 92.
    3GPP TS 32.500 V12.0.0. Self-organizing networks (SON); concepts and requirements, 2014Google Scholar
  93. 93.
    Litjens R, Gunnarsson F, Sayrac B, et al. Self-management for unified heterogeneous radio access networks. In: Proceedings of IEEE 77th Vehicular Technology Conference, Dresden, 2013. 1–5Google Scholar
  94. 94.
    Gelabert X, Sayrac B, Jemaa S B. A performance evaluation framework for control loop interaction in Self Organizing Networks. In: Proceedings of IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications, Toronto, 2011. 263–267Google Scholar
  95. 95.
    Vlacheas P, Thomatos E, Tsagkaris K, et al. Operator-governed SON coordination in downlink LTE networks. In: Proceedings of Future Network & Mobile Summit, Berlin, 2012. 1–9Google Scholar
  96. 96.
    Tsagkaris K, Koutsouris N, Demestichas P, et al. SON Coordination in a unified management framework. In: Proceedings of IEEE 77th Vehicular Technology Conference, Dresden, 2013. 1–5Google Scholar
  97. 97.
    Gelabert X, Sayrac B, Ben J S. A heuristic coordination framework for self-optimizing mechanisms in LTE HetNets. IEEE Trans Veh Technol, 2014, 63: 1320–1334CrossRefGoogle Scholar
  98. 98.
    Akyildiz I F, Lee WY, Vuran M C, et al. Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Comput Netw, 2006, 50: 2127–2159zbMATHCrossRefGoogle Scholar
  99. 99.
    Yucek T, Arslan H. A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun Surv Tut, 2009, 11: 116–130CrossRefGoogle Scholar
  100. 100.
    Lei S T, Wang H Q, Shen L. Spectrum sensing based on goodness of fit tests. In: Proceedings of International Conference on Electronics, Communications and Control, Ningbo, 2011. 485–489Google Scholar
  101. 101.
    Rostami S, Arshad K, Moessner K. Order-statistic based spectrum sensing for cognitive radio. IEEE Commun Lett, 2012, 16: 592–595CrossRefGoogle Scholar
  102. 102.
    Das D, Das S. A cooperative spectrum sensing scheme using multiobjective hybrid IWO/PSO algorithm in cognitive radio networks. In: Proceedings of International Conference on Issues and Challenges in Intelligent Computing Techniques, Ghaziabad, 2014. 225–230Google Scholar
  103. 103.
    Hattab G, Ibnkahla M. Multiband spectrum access: great promises for future cognitive radio networks. Proc IEEE, 2014, 102: 282–306CrossRefGoogle Scholar
  104. 104.
    Christian I, Moh S, Chung I, et al. Spectrum mobility in cognitive radio networks. IEEE Commun Mag, 2012, 50: 114–121CrossRefGoogle Scholar
  105. 105.
    Baldini G, Sturman T, Biswas A R, et al. Security aspects in software defined radio and cognitive radio networks: a survey and a way ahead. IEEE Commun Surv Tut, 2012, 14: 355–379CrossRefGoogle Scholar
  106. 106.
    Duan L J, Min A W, Huang J W, et al. Attack prevention for collaborative spectrum sensing in cognitive radio networks. IEEE J Sel Area Commun, 2012, 30: 1658–1665CrossRefGoogle Scholar
  107. 107.
    I C L, Rowell C, Han S F, et al. Toward green and soft: a 5G perspective. IEEE Commun Mag, 2014, 52: 6–73CrossRefGoogle Scholar
  108. 108.
    IMT-2020(5G) Promotion Group. White Paper on 5G Vision and Requirements, 2014Google Scholar
  109. 109.
    Han C Z, Harrold T, Armour S, et al. Green radio: radio techniques to enable energy-efficient wireless networks. IEEE Commun Mag, 2011, 49: 46–54CrossRefGoogle Scholar
  110. 110.
    Xu X Q, He G N, Zhang S Q, et al. On functionality separation for green mobile networks: concept study over LTE. IEEE Commun Mag, 2013, 51: 82–90CrossRefGoogle Scholar
  111. 111.
    Hu R Q, Qian Y. An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Commun Mag, 2014, 52: 94–101CrossRefGoogle Scholar
  112. 112.
    Su G, Hidell M, Abrahamsson H, et al. Resource management in radio access and IP-based core networks for IMT advanced and beyond. Sci China Inf Sci, 2013, 56: 022310MathSciNetCrossRefGoogle Scholar
  113. 113.
    Chai R, Wang X J, Chen Q B, et al. Utility-based bandwidth allocation algorithm for heterogeneous wireless networks. Sci China Inf Sci, 2013, 56: 022313MathSciNetCrossRefGoogle Scholar
  114. 114.
    Xu X D, Wang D, Tao X F, et al. Resource pooling for frameless network architecture with adaptive resource allocation. Sci China Inf Sci, 2013, 56: 022314MathSciNetGoogle Scholar
  115. 115.
    Xing C W, Fei Z S, Li N, et al. Statistically robust resource allocation for distributed multi-carrier cooperative networks. Sci China Inf Sci, 2013, 56: 022315MathSciNetGoogle Scholar
  116. 116.
    Cui Q M, Kang P C, Huang X Q, et al. Optimal power allocation for homogeneous and heterogeneous CA-MIMO systems. Sci China Inf Sci, 2013, 56: 022316MathSciNetCrossRefGoogle Scholar
  117. 117.
    Yu H, Qin H H, Li Y Z, et al. Energy-efficient power allocation for non-regenerative OFDM relay links. Sci China Inf Sci, 2013, 56: 022306MathSciNetGoogle Scholar
  118. 118.
    Xu J, Li S C, Qiu L, et al. Energy efficient downlink MIMO transmission with linear precoding. Sci China Inf Sci, 2013, 56: 022309MathSciNetGoogle Scholar
  119. 119.
    Chen H, Wu D, Cai Y. Coalition formation game for green resource management in D2D communications. IEEE Commun Lett, 2014, 18: 1395–1398CrossRefGoogle Scholar
  120. 120.
    Taha A-E M. Green wireless networks: a radio resource management perspective. In: Proceedings of IEEE International Conference on Communications, Ottawa, 2012. 5998–6002Google Scholar
  121. 121.
    Davaslioglu K, Ayanoglu E. Quantifying potential energy efficiency gain in green cellular wireless networks. IEEE Commun Surv Tut, 2014, 16: 2065–2091CrossRefGoogle Scholar
  122. 122.
    Hossain M F, Munasinghe K S, Jamalipour A. An eco-inspired energy efficient access network architecture for next generation cellular systems. In: Proceedings of IEEE Wireless Communications and Networking Conference, Cancun, 2011. 992–997Google Scholar
  123. 123.
    Wu J, Zhou S, Niu Z S. Traffic-aware base station sleeping control and power matching for energy-delay tradeoffs in green cellular networks. IEEE Trans Wirel Commun, 2013, 12: 4196–4209CrossRefGoogle Scholar
  124. 124.
    Niu Z S, Wu Y Q, Gong J, et al. Cell zooming for cost-efficient green cellular networks. IEEE Commun Mag, 2010, 48: 74–79CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Zheng Ma
    • 1
  • ZhengQuan Zhang
    • 1
    Email author
  • ZhiGuo Ding
    • 2
  • PingZhi Fan
    • 1
  • HengChao Li
    • 1
  1. 1.Provincial Key Lab of Information Coding and TransmissionSouthwest Jiaotong UniversityChengduChina
  2. 2.Department of Communication SystemsLancaster UniversityLancasterUK

Personalised recommendations