Science China Information Sciences

, Volume 56, Issue 12, pp 1–13 | Cite as

Harvesting light with transformation optics

  • Yu Luo
  • RongKuo Zhao
  • Antonio I. Fernandez-Dominguez
  • Stefan A. Maier
  • John B. Pendry
Special Focus Progress of Projects Supported by NSFC


Transformation optics (TO) is a new tool for controlling electromagnetic fields. In the context of metamaterial technology, it provides a direct link between a desired electromagnetic (EM) phenomenon and the material response required for its occurrence. Recently, this powerful framework has been successfully exploited to study surface plasmon assisted phenomena such as light harvesting. Here, we review the general strategy based on TO to design plasmonic devices capable of harvesting light over a broadband spectrum and achieving considerable field confinement and enhancement. The methodology starts with two-dimensional (2D) cases, such as 2D metal edges, crescent-shaped cylinders, nanowire dimers, and rough metal surfaces, and is well extended to fully-fledged three-dimensional (3D) situations. The largely analytic approach gives physical insights into the processes involved and suggests a way forward to study a wide variety of plasmonic nanostructures.


transformation optics light harvesting surface plasmons broadband absorption field enhancement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anker J N, Hall W P, Lyandres O, et al. Biosensing with plasmonic nanosensors. Nat Mater, 2008, 7: 442–453Google Scholar
  2. 2.
    Kabashin A V, Evans P, Pastkovsky S, et al. Plasmonic nanorod metamaterials for biosensing. Nat Mater, 2009, 8: 867–871Google Scholar
  3. 3.
    Brolo A G. Plasmonics for future biosensors. Nat Photon, 2012, 6: 709–713Google Scholar
  4. 4.
    Wu C H, Khanikaev A B, Adato R, et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat Mater, 2012, 11: 69–75Google Scholar
  5. 5.
    Nie S M, Emery S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275: 1102–1106Google Scholar
  6. 6.
    Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett, 1997, 78: 1667–1670Google Scholar
  7. 7.
    Lim D K, Jeon K S, Kim H M, et al. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater, 2010, 9: 60–67Google Scholar
  8. 8.
    Kravets V G, Schedin F, Jalil R, et al. Singular phase nano-optics in plasmonic metamaterials for label-free singlemolecule detection. Nat Mater, 2013, 12: 304–309Google Scholar
  9. 9.
    Oulton R F, Sorger V J, Zentgraf T, et al. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461: 629–632Google Scholar
  10. 10.
    Noginov M A, Zhu G, Belgrave A M, et al. Demonstration of a spaser-based nanolaser. Nature, 2009, 460: 1110–1112Google Scholar
  11. 11.
    Ma R M, Oulton R F, Sorger V J, et al. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat Mater, 2011, 10: 110–113Google Scholar
  12. 12.
    Lu Y J, Kim J, Chen H Y, et al. Plasmonic nanolaser using epitaxially grown silver film. Science, 2012, 337: 450–453Google Scholar
  13. 13.
    Kim S, Jin J H, Kim Y J, et al. High-harmonic generation by resonant plasmon field enhancement. Nature, 2008, 453: 757–760Google Scholar
  14. 14.
    Zhang Y, Grady N K, Ayala-Orozco C, et al. Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Lett, 2011, 11: 5519–5523Google Scholar
  15. 15.
    Navarro-Cia M, Maier S A. Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation. ACS Nano, 2012, 6: 3537–3544Google Scholar
  16. 16.
    Stockman M I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett, 2004, 93: 137404Google Scholar
  17. 17.
    Ropers C, Neacsu C C, Elsaesser T, et al. Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett, 2007, 7: 2784–2788Google Scholar
  18. 18.
    Moreno E, Rodrigo S G, Bozhevolnyi S I, et al. Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys Rev Lett, 2008, 100: 023901Google Scholar
  19. 19.
    Volkov V S, Bozhevolnyi S I, Rodrigo S G, et al. Nanofocusing with channel plasmon polaritons. Nano Lett, 2009, 9: 1278–1282Google Scholar
  20. 20.
    De Angelis F, Das G, Candeloro P, et al. Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nat Nanotechnol, 2010, 5: 67–72Google Scholar
  21. 21.
    Zhang J J, Xiao S S, Wubs M, et al. Surface plasmon wave adapter designed with transformation optics. ACS Nano, 2011, 5: 4359–4364Google Scholar
  22. 22.
    Choo H, Kim M K, Staffaroni M, et al. Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper. Nat Photon, 2012, 6: 837–843Google Scholar
  23. 23.
    Pile D F P, Ogawa T, Gramotnev D K, et al. Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl Phys Lett, 2005, 87: 061106Google Scholar
  24. 24.
    Choi H, Pile D F P, Nam S, et al. Compressing surface plasmons for nano-scale optical focusing. Opt Express, 2009, 17: 7519–7524Google Scholar
  25. 25.
    Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424: 824–830Google Scholar
  26. 26.
    Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nat Photon, 2010, 4: 83–91Google Scholar
  27. 27.
    Halas N J, Lal S, Chang W S, et al. Plasmons in strongly coupled metallic nanostructures. Chem Rev, 2011, 111: 3913–3961Google Scholar
  28. 28.
    Rycenga M, Cobley C M, Zeng J, et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev, 2011, 111: 3669–3712Google Scholar
  29. 29.
    Giannini V, Fernandez-Dominguez A I, Sonnefraud Y, et al. Controlling light localization and light-matter interactions with nanoplasmonics. Small, 2010, 6: 2498–2507Google Scholar
  30. 30.
    Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312: 1780–1782MathSciNetMATHGoogle Scholar
  31. 31.
    Kundtz N B, Smith D R, Pendry J B. Electromagnetic design with transformation optics. Proc IEEE, 2011, 99: 1622–1633Google Scholar
  32. 32.
    Chen H Y, Chan C T, Sheng P. Transformation optics and metamaterials. Nat Mater, 2010, 9: 387–396Google Scholar
  33. 33.
    Ward A J, Pendry J B. Refraction and geometry in Maxwell’s equations. J Mod Opt, 1996, 43: 773–793MathSciNetMATHGoogle Scholar
  34. 34.
    Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314: 977–980Google Scholar
  35. 35.
    Luo Y, Chen H S, Zhang J J, et al. Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations. Phys Rev B, 2008, 77: 125127Google Scholar
  36. 36.
    Zhang J J, Luo Y, Mortensen N A. Minimizing the scattering of a nonmagnetic cloak. Appl Phys Lett, 2010, 96: 113511Google Scholar
  37. 37.
    Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking. Phys Rev Lett, 2008, 101: 203901Google Scholar
  38. 38.
    Liu R, Ji C, Mock J J, et al. Broadband ground-plane cloak. Science, 2009, 323: 366–369Google Scholar
  39. 39.
    Valentine J, Li J S, Zentgraf T, et al. An optical cloak made of dielectrics. Nat Mater, 2009, 8: 568–571Google Scholar
  40. 40.
    Ergin T, Stenger N, Brenner P, et al. Three-dimensional invisibility cloak at optical wavelengths. Science, 2010, 328: 337–339Google Scholar
  41. 41.
    Ma H F, Cui T J. Three-dimensional broadband ground-plane cloak made of metamaterials. Nat Commun, 2010, 1: 21Google Scholar
  42. 42.
    Luo Y, Zhang J J, Chen H S, et al. A rigorous analysis of plane-transformed invisibility cloaks. IEEE Trans Antennas Propag, 2009, 57: 3926–3933Google Scholar
  43. 43.
    Chen X Z, Luo Y, Zhang J J, et al. Macroscopic invisibility cloaking of visible light. Nat Commun, 2011, 2: 176Google Scholar
  44. 44.
    Zhang J, Liu L, Luo Y, et al. Homogeneous optical cloak constructed with uniform layered structures. Opt Express, 2011, 19: 8625–8631Google Scholar
  45. 45.
    Landy N, Smith D R. A full-parameter unidirectional metamaterial cloak for microwaves. Nat Mater, 2013, 12: 25–28Google Scholar
  46. 46.
    Luo Y, Zhang J J, Wu B I, et al. Interaction of an electromagnetic wave with a cone-shaped invisibility cloak and polarization rotator. Phys Rev B, 2008, 78: 125108Google Scholar
  47. 47.
    Zhang J J, Luo Y, Chen H S, et al. Cloak of arbitrary shape. J Opt Soc Am B, 2008, 25: 1776–1779Google Scholar
  48. 48.
    Wee W H, Pendry J B. Super phase array. New J Phys, 2010, 12: 033047Google Scholar
  49. 49.
    Luo Y, Zhang J J, Chen H S, et al. High-directivity antenna with small antenna aperture. Appl Phys Lett, 2009, 95: 193506Google Scholar
  50. 50.
    Zhang J J, Luo Y, Mortensen N A. Hiding levitating objects above a ground plane. Appl Phys Lett, 2010, 97: 133501Google Scholar
  51. 51.
    Kundtz N, Smith D R. Extreme-angle broadband metamaterial lens. Nat Mater, 2010, 9: 129–132Google Scholar
  52. 52.
    Ma H F, Cui T J. Three-dimensional broadband and broad-angle transformation-optics lens. Nat Commun, 2010, 1: 124Google Scholar
  53. 53.
    Luo Y, Zhang J J, Ran L X, et al. New concept conformal antennas utilizing metamaterial and transformation optics. IEEE Antenn Wirel Propag Lett, 2008, 7: 508–511Google Scholar
  54. 54.
    Zhang J J, Luo Y, Chen H S, et al. Manipulating the directivity of antennas with metamaterial. Opt Express, 2008, 16: 10962–10967Google Scholar
  55. 55.
    Luo Y, Zhang J J, Chen H S, et al. Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect. Prog Electromagn Res, 2009, 95: 167–178Google Scholar
  56. 56.
    Zhang J J, Luo Y, Mortensen N A. Transmission of electromagnetic waves through sub-wavelength channels. Opt Express, 2010, 18: 3864–3870Google Scholar
  57. 57.
    Zhang J J, Luo Y, Chen H S, et al. Guiding waves through an invisible tunnel. Opt Express, 2009, 17: 6203–6208Google Scholar
  58. 58.
    Luo Y, Zhang J J, Chen H S, et al. Cylindrical cloak with axial permittivity/permeability spatially invariant. Appl Phys Lett, 2008, 93: 033504Google Scholar
  59. 59.
    Luo Y, Zhang J J, Chen H S, et al. Full-wave analysis of prolate spheroidal and hyperboloidal cloaks. J Phys D Appl Phys, 2008, 41: 235101Google Scholar
  60. 60.
    Zhang J J, Luo Y, Xi S, et al. Directive emission obtained by coordinate transformation. Prog Electromagn Res, 2008, 81: 437–446Google Scholar
  61. 61.
    Zhang J J, Huangfu J T, Luo Y, et al. Cloak for multilayered and gradually changing media. Phys Rev B, 2008, 77: 035116Google Scholar
  62. 62.
    Zhang J J, Luo Y, Chen H S, et al. Sensitivity of transformation cloak in engineering. Prog Electromagn Res, 2008, 84: 93–104Google Scholar
  63. 63.
    Pendry J B, Aubry A, Smith D R, et al. Transformation optics and subwavelength control of light. Science, 2012, 337: 549–552MathSciNetGoogle Scholar
  64. 64.
    Liu Y M, Zhang X. Recent advances in transformation optics. Nanoscale, 2012, 4: 5277–5292Google Scholar
  65. 65.
    Aubry A, Lei D Y, Maier S A, et al. Conformal transformation applied to plasmonics beyond the quasistatic limit. Phys Rev B, 2010, 82: 205109Google Scholar
  66. 66.
    Fernandez-Dominguez A I, Wiener A, Garcia-Vidal F J, et al. Transformation-optics description of nonlocal effects in plasmonic nanostructures. Phys Rev Lett, 2012, 108: 023901Google Scholar
  67. 67.
    Fernandez-Dominguez A I, Zhang P, Luo Y, et al. Transformation-optics insight into nonlocal effects in separated nanowires. Phys Rev B, 2012, 86: 241110Google Scholar
  68. 68.
    Aubry A, Lei D Y, Fernandez-Dominguez A I, et al. Plasmonic light-harvesting devices over the whole visible spectrum. Nano Lett, 2010, 10: 2574–2579Google Scholar
  69. 69.
    Luo Y, Pendry J B, Aubry A. Surface plasmons and singularities. Nano Lett, 2010, 10: 4186–4191Google Scholar
  70. 70.
    Mcphedran R C, Perrins W T. Electrostatic and optical resonances of cylinder pairs. Appl Phys, 1981, 24: 311–318Google Scholar
  71. 71.
    Mcphedran R C, Milton G W. Transport-properties of touching cylinder pairs and of the square array of touching cylinders. Proc R Soc A-Math Phys Eng Sci, 1987, 411: 313–326Google Scholar
  72. 72.
    Garcia-Vidal F J, Pendry J B. Collective theory for surface enhanced Raman scattering. Phys Rev Lett, 1996, 77: 1163–1166Google Scholar
  73. 73.
    Xu H X, Aizpurua J, Kall M, et al. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E, 2000, 62: 4318–4324Google Scholar
  74. 74.
    Kottmann J P, Martin O J F. Plasmon resonant coupling in metallic nanowires. Opt Express, 2001, 8: 655–663Google Scholar
  75. 75.
    Talley C E, Jackson J B, Oubre C, et al. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett, 2005, 5: 1569–1574Google Scholar
  76. 76.
    Sweatlock L A, Maier S A, Atwater H A, et al. Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles. Phys Rev B, 2005, 71: 235408Google Scholar
  77. 77.
    Romero I, Aizpurua J, Bryant G W, et al. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt Express, 2006, 14: 9988–9999Google Scholar
  78. 78.
    Lassiter J B, Aizpurua J, Hernandez L I, et al. Close encounters between two nanoshells. Nano Lett, 2008, 8: 1212–1218Google Scholar
  79. 79.
    Atre A C, Garcia-Etxarri A, Alaeian H, et al. A broadband negative index metamaterial at optical frequencies. Adv Optical Mater, 2013, 1: 327–333Google Scholar
  80. 80.
    Aubry A, Lei D Y, Maier S A, et al. Broadband plasmonic device concentrating the energy at the nanoscale: the crescent-shaped cylinder. Phys Rev B, 2010, 82: 125430Google Scholar
  81. 81.
    Luo Y, Lei D Y, Maier S A, et al. Broadband light harvesting nanostructures robust to edge bluntness. Phys Rev Lett, 2012, 108: 023901Google Scholar
  82. 82.
    Luo Y, Aubry A, Pendry J B. Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: a transformation optics approach. Phys Rev B, 2011, 83: 155422Google Scholar
  83. 83.
    Wu L Y, Ross B M, Lee L P. Optical properties of the crescent-shaped nanohole antenna. Nano Lett, 2009, 9: 1956–1961Google Scholar
  84. 84.
    Shumaker-Parry J S, Rochholz H, Kreiter M. Fabrication of crescent-shaped optical antennas. Adv Mater, 2005, 17: 2131–2134Google Scholar
  85. 85.
    Rochholz H, Bocchio N, Kreiter M. Tuning resonances on crescent-shaped noble-metal nanoparticles. New J Phys, 2007, 9: 53Google Scholar
  86. 86.
    Bukasov R, Shumaker-Parry J S. Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett, 2007, 7: 1113–1118Google Scholar
  87. 87.
    Luo Y, Lei D Y, Maier S A, et al. Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: from symmetric to asymmetric edge rounding. ACS Nano, 2012, 6: 6492–6506Google Scholar
  88. 88.
    Aubry A, Lei D Y, Maier S A, et al. Interaction between plasmonic nanoparticles revisited with transformation optics. Phys Rev Lett, 2010, 105: 233901Google Scholar
  89. 89.
    Aubry A, Lei D Y, Maier S A, et al. Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach. ACS Nano, 2011, 5: 3293–3308Google Scholar
  90. 90.
    Prodan E, Radloff C, Halas N J, et al. A hybridization model for the plasmon response of complex nanostructures. Science, 2003, 302: 419–422Google Scholar
  91. 91.
    Nordlander P, Prodan E. Plasmon hybridization in nanoparticles near metallic surfaces. Nano Lett, 2004, 4: 2209–2213Google Scholar
  92. 92.
    Willingham B, Brandl D W, Nordlander P. Plasmon hybridization in nanorod dimers. Appl Phys B-Lasers Opt, 2008, 93: 209–216Google Scholar
  93. 93.
    Luo Y. Resonant plasmonic nanostructures: transformation optics applied to plasmonics. Dissertation of Doctoral Degree. London: Imperial College London, 2012. 94–106Google Scholar
  94. 94.
    Fernandez-Dominguez A I, Maier S A, Pendry J B. Collection and concentration of light by touching spheres: a transformation optics approach. Phys Rev Lett, 2010, 105: 266807Google Scholar
  95. 95.
    Fernandez-Dominguez A I, Luo Y, Wiener A, et al. Theory of three-dimensional nanocrescent light harvesters. Nano Lett, 2012, 12: 5946–5953Google Scholar
  96. 96.
    Pendry J B, Fernández-Dominguez A I, Luo Y, et al. Capturing photons with transformation optics. Nat Phys, 2013, 9: 518–522Google Scholar
  97. 97.
    Atay T, Song J H, Nurmikko A V. Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime. Nano Lett, 2004, 4: 1627–1631Google Scholar
  98. 98.
    Hill R T, Mock J J, Urzhumov Y, et al. Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light. Nano Lett, 2010, 10: 4150–4154Google Scholar
  99. 99.
    Mock J J, Hill R T, Tsai Y J, et al. Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation. Nano Lett, 2012, 12: 1757–1764Google Scholar
  100. 100.
    Brown L V, Sobhani H, Lassiter J B, et al. Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano, 2010, 4: 819–832Google Scholar
  101. 101.
    Huang F M, Wilding D, Speed J D, et al. Dressing plasmons in particle-in-cavity architectures. Nano Lett, 2011, 11: 1221–1226Google Scholar
  102. 102.
    Cang H, Labno A, Lu C G, et al. Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging. Nature, 2011, 469: 385–388Google Scholar
  103. 103.
    Ciraci C, Hill R T, Mock J J, et al. Probing the ultimate limits of plasmonic enhancement. Science, 2012, 337: 1072–1074MATHGoogle Scholar
  104. 104.
    Savage K J, Hawkeye M M, Esteban R, et al. Revealing the quantum regime in tunnelling plasmonics. Nature, 2012, 491: 574–577Google Scholar
  105. 105.
    Lei D Y, Fernandez-Dominguez A I, Sonnefraud Y, et al. Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy. ACS Nano, 2012, 6: 3537–3544Google Scholar
  106. 106.
    Hanham S M, Fernandez-Dominguez A I, Teng J H, et al. Broadband terahertz plasmonic response of touching InSb disks. Adv Mater, 2012, 24: 226–230Google Scholar
  107. 107.
    Isaac T H, Barnes W L, Hendry E. Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons. Appl Phys Lett, 2008, 93: 241115Google Scholar
  108. 108.
    Giannini V, Berrier A, Maier S A, et al. Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies. Opt Express, 2010, 18: 2797–2807Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yu Luo
    • 1
  • RongKuo Zhao
    • 1
  • Antonio I. Fernandez-Dominguez
    • 1
  • Stefan A. Maier
    • 1
  • John B. Pendry
    • 1
  1. 1.The Blackett Laboratory, Department of PhysicsImperial College LondonLondonUK

Personalised recommendations