Advertisement

Science China Information Sciences

, Volume 57, Issue 2, pp 1–11 | Cite as

Design of efficiently encodable nonbinary LDPC codes for adaptive coded modulation

  • XiuNi WangEmail author
  • Xiao Ma
  • BaoMing Bai
Research Paper

Abstract

This paper is concerned with constructions of nonbinary low-density parity-check (LDPC) codes for adaptive coded modulations (ACM). A new class of efficiently encodable structured nonbinary LDPC codes are proposed. The defining parity-check matrices are composed of scalar circulant sub-matrices which greatly reduce the storage requirement when compared with random LDPC codes. With this special structure of parity-check matrix, an efficient encoding algorithm is presented. Based on the proposed codes, a family of variablerate/variable-field nonbinary LDPC codes is designed for the ACM system. When combined with matched-size signal constellations, the family of constructed codes can achieve a wide range of spectral efficiency. Furthermore, the resultant ACM system can be implemented via a set of encoder and decoder. Simulation results show that the proposed nonbinary LDPC codes for the ACM system perform well.

Keywords

adaptive coded modulation (ACM) nonbinary LDPC codes q-ary codes variable-field LDPC codes variable-rate LDPC codes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gallager R G. Low density parity check codes. IRE Trans Inform Theory, 1962, 8: 21–28CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    MacKay D J C, Neal R M. Near Shannon limit performance of low density parity check codes. Electron Lett, 1997, 33: 457–458CrossRefGoogle Scholar
  3. 3.
    Spielman D A. Linear-time encodable and decodable error-correcting codes. IEEE Trans Inform Theory, 1996, 42: 1723–1731CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Davey M C, MacKay D J C. Low density parity check codes over GF(q). IEEE Commun Lett, 1998, 2: 165–167CrossRefGoogle Scholar
  5. 5.
    MacKay D J C, Davey M C. Evaluation of gallager codes for short block length and high rate application. In: International Conference on Mathematic and its Applications: Codes, Systems and Graphincal Models, New York, 2000. 113–130Google Scholar
  6. 6.
    Barnault L, Declercq D. Fast decoding algorithm for nonbinary LDPC codes over GF(q). In: IEEE Information Theory Workshop, Paris France, 2003. 70–73Google Scholar
  7. 7.
    Zeng L Q, Lan L, Tai Y Y, et al. Dispersed Reed-Solomon codes for iterative decoding and construction of q-ary LDPC codes. In: IEEE Global Telecommunications Conference, St. Louis, 2005. 1193–1198Google Scholar
  8. 8.
    Zeng L Q, Lan L, Tai Y Y, et al. Constructions of nonbinary quasi-cyclic LDPC codes: a finite field approach. IEEE Trans Commun, 2008, 56: 545–554CrossRefGoogle Scholar
  9. 9.
    Voicila A, Declercq D, Verdier F, et al. Low-complexity, low-memory EMS algorithm for nonbinary LDPC codes. In: IEEE International Conference on Communications, Glasgow, 2007. 671–676Google Scholar
  10. 10.
    Ma X, Zhang K, Chen H Q, et al. Low complexity X-EMS algorithms for nonbinary LDPC codes. IEEE Trans Commun, 2012, 60: 9–13CrossRefGoogle Scholar
  11. 11.
    Goldsmith A. Wireless Communications. Cambridge: Cambridge University Press, 2005CrossRefGoogle Scholar
  12. 12.
    Caire G, Kumar K R. Information theoretic foundations of adaptive coded modulation. Proc IEEE, 2007, 95: 2269–2273CrossRefGoogle Scholar
  13. 13.
    Kou Y, Lin S, Fossorier M P C. Low-density parity-check codes based on finite geometries: a discovery and new results. IEEE Trans Inform Theory, 2001, 47: 2711–2736CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Tanner R M, Sridhara D, Sridharan A, et al. LDPC block and convolutional codes based on circulant matrices. IEEE Trans Inform Theory, 2004, 50: 2966–2984CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Lan L, Zeng L Q, Tai Y Y, et al. Construction of quasi-cyclic LDPC codes for AWGN and binary erasure channels: a finite field approach. IEEE Trans Inform Theory, 2007, 53: 2429–2458CrossRefMathSciNetGoogle Scholar
  16. 16.
    Fossorier M. Quasi-cyclic low-density parity-check codes from ciuculant permutation matrices. IEEE Trans Inform Theory, 2004, 50: 1788–1793CrossRefMathSciNetGoogle Scholar
  17. 17.
    Declercq D, Fossorier M. Decoding algorithms for nonbinary LDPC codes over GF(q). IEEE Trans Commun, 2007, 55: 633–643CrossRefGoogle Scholar
  18. 18.
    Zhao S C, Ma X, Zhang X Y, et al. A class of nonbinary LDPC codes with fast encoding and decoding algorithms. IEEE Trans Commun, 2013, 60: 1–6CrossRefGoogle Scholar
  19. 19.
    Goupil A, Colas M, Gelle G, et al. FFT-based BP decoding of general LDPC codes over Abelian groups. IEEE Trans Commun, 2007, 55: 644–649CrossRefGoogle Scholar
  20. 20.
    Zhu H L, Wang J Z. Chunk-based resource allocation in OFDMA systems—Part I: chunk allocation. IEEE Trans Commun, 2009, 57: 2734–2744CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Computer EngineeringGuangzhou UniversityGuangzhouChina
  2. 2.Department of Electronics and Communication EngineeringSun Yat-sen UniversityGuangzhouChina
  3. 3.State Key Laboratory of ISNXidian UniversityXi’anChina

Personalised recommendations