Advertisement

Science China Information Sciences

, Volume 56, Issue 3, pp 1–11 | Cite as

Animating turbulent water by vortex shedding in PIC/FLIP

  • Jian Zhu
  • YouQuan Liu
  • YuanZhang Chang
  • EnHua Wu
Research Paper Special Focus

Abstract

In this paper, we present a hybrid method, which integrates PIC/FLIP and vortex particle methods into a unified framework, to efficiently simulate vortex shedding that happens when fluids flow around internal obstacles. To improve efficiency and reduce the numerical dissipations, we first solve the governing equations on a coarse grid using PIC/FLIP, and then interpolate the intermediate results to a finer grid to obtain the base flow. When the regular particles in PIC/FLIP enter the boundary layer, if the specified conditions are satisfied to cause vortex shedding, they are selected as vortex particles by assigning additional vorticity related attributes. The vortex particle dynamics are controlled by the vorticity form of NS equations, and several efficient methods are proposed to solve them on the finer grid. Finally, the obtained turbulence flow is added to the base flow. As a result, we are able to simulate turbulent water with rich wake details around the internal obstacles.

Keywords

physically based fluid simulation turbulence vortex shedding vortex particle PIC/FLIP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stam J. Stable fluids. In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques (SIGGRAPH 99), Los Angeles, 1999. 121–128Google Scholar
  2. 2.
    Bridson R. Fluid Simulation for Computer Graphics. Wellesley: A K Peters, Ltd. 2008CrossRefGoogle Scholar
  3. 3.
    Foster N, Fedkiw R. Practical animation of liquids. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 01), Los Angeles, 2001. 23–30Google Scholar
  4. 4.
    Fedkiw R, Stam J, Jensen H W. Visual simulation of smoke. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 01), Los Angeles, 2001. 15–22Google Scholar
  5. 5.
    Nguyen D Q, Fedkiw R, Jensen H W. Physically based modeling and animation of fire. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 02), San Antonio, 2002. 721–728Google Scholar
  6. 6.
    Muller M, Charypar D, Gross M. Particle-based fluid simulation for interactive applications. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, 2003. 154–159Google Scholar
  7. 7.
    Harlow F H. The particle-in-cell method for numerical solution of problems in fluid dynamics. In: Symp. on Experimental Arithmetic, High-Speed Computations and Mathematics, Chicago, 1963. 269Google Scholar
  8. 8.
    Brackbill J U, Ruppel H M. FLIP: a method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J Comput Phys, 1986, 65: 314–343MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Kim T, Thuerey N, James D, et al. Wavelet turbulence for fluid simulation. In: Proceedings of the 35th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 08), Los Angeles, 2008. 27–33Google Scholar
  10. 10.
    Schechter H, Bridson R. Evolving sub-grid turbulence for smoke animation. In: Proceedings of the 2008 ACM/ Eurographics Symposium on Computer Animation, Dublin, 2008. 1–7Google Scholar
  11. 11.
    Narain R, Sewall J, Carlson M, et al. Fast animation of turbulence using energy transport and procedural synthesis. ACM Trans Graph, 2008, 27: 166: 1–166: 8CrossRefGoogle Scholar
  12. 12.
    Selle A, Rasmussen N, Fedkiw R. A vortex particle method for smoke, water and explosions. In: Proceedings of the 32th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 05), Los Angeles, 2005. 910–914Google Scholar
  13. 13.
    Pfaff T, Thuerey N, Selle A, et al. Synthetic turbulence using artificial boundary layers. ACM Trans Graph, 2009, 28: 1–10CrossRefGoogle Scholar
  14. 14.
    Cottet G H, Koumoutsakos P D. Vortex Methods: Theory and Practice. Cambridge: Cambridge University Press, 1998Google Scholar
  15. 15.
    Weißmann S, Pinkall U. Filament-based smoke with vortex shedding and variational reconnection. In: Proceedings of the 37th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 10), Los Angeles, 2010. 115:1–115:12Google Scholar
  16. 16.
    Kim B, Liu Y, Llamas I, et al. Flow fixer: Using BFECC for fluid simulation. In: Proceedings of Eurographics Workshop on Natural Phenomena, Dublin, 2005. 51–56Google Scholar
  17. 17.
    Selle A, Fedkiw R, Kim B, et al. An unconditionally stable MacCormack method. J Sci Comput, 2005, 35: 350–371MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jeroen M, Jonathan M C, Sanjit P, et al. Low viscosity flow simulations for animation. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Dublin, 2008. 9–18Google Scholar
  19. 19.
    Takahashi T, Fujii H, Kunimatsu A, et al. Realistic animation of fluid with splash and foam. Comput Graph Forum, 2003, 22: 391–400CrossRefGoogle Scholar
  20. 20.
    Kim D, Young S O. A semi-Lagrangian cip fluid solver without dimensional splitting. Comput Graph Forum, 2008, 27: 467–475CrossRefGoogle Scholar
  21. 21.
    Losasso F, Gibou F, Fedkiw R. Simulating water and smoke with an octree data structure. ACM Trans Graph, 2004, 23: 457–462CrossRefGoogle Scholar
  22. 22.
    Klingner B M, Feldman B E, Chentanez N, et al. Fluid animation with dynamic meshes. ACM Trans Graph, 2006, 25: 820–825CrossRefGoogle Scholar
  23. 23.
    Dobashi Y, Matsuda Y, Yamamoto T, et al. A fast simulation method using overlapping grids for interactions between smoke and rigid objects. Comput Graph Forum, 2008, 23: 539–546CrossRefGoogle Scholar
  24. 24.
    Irving G, Guendelman E, Losasso F, et al. Efficient simulation of large bodies of water by coupling two and three dimensional techniques. ACM Trans Graph, 2006, 25: 805–811CrossRefGoogle Scholar
  25. 25.
    Losasso F, Talton J, Kwatra N, et al. Two-way coupled SPH and particle level set fluid simulation. IEEE Trans Vis Comput Graph, 2008, 14: 797–804CrossRefGoogle Scholar
  26. 26.
    Zhu Y, Bridson R. Animating sand as a fluid. ACM Trans Graph, 2005, 24: 965–972CrossRefGoogle Scholar
  27. 27.
    Zhu B, Yang X B, Fan Y. Creating and preserving vortical details in SPH fluid. Comput Graph Forum, 2010, 29: 2207–2214CrossRefGoogle Scholar
  28. 28.
    Ryoichi A, Reiji T. A particle-based method for preserving fluid sheets. In: Proceedings of the 2011 ACM SIGGRAPH/ Eurographics Symposium on Computer Animation, Vancouver, 2011. 7–16Google Scholar
  29. 29.
    Gamito M N, Lopes P F, Gomes M R. Two dimensional simulation of gaseous phenomena using vortex particles. In: Proceedings of the 6th Eurographics Workshop on Computer Animation and Simulation, Maastricht, 1995. 3–15Google Scholar
  30. 30.
    Park S I, Kim M J. Vortex fluid for gaseous phenomena. In: Proceedings of the 2005 ACM SIGGRAPH /Eurographics Symposium on Computer Animation, Los Angeles, 2005. 261–270Google Scholar
  31. 31.
    Angelidis A, Neyret F. Simulation of smoke based on vortex filament primitives. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Los Angeles, 2005. 87–96Google Scholar
  32. 32.
    Pope S B. Turbulent Flows. Cambridge: Cambridge University Press, 2005Google Scholar
  33. 33.
    Pfaff T, Thuerey N, Cohen J, et al. Scalable fluid simulation using anisotropic turbulence particles. ACM Trans Graph, 2010, 29: 174–182CrossRefGoogle Scholar
  34. 34.
    Zhao Y, Yuan Z, Chen F. Enhancing fluid animation with adaptive, controllable and intermittent turbulence. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Madrid, 2010. 75–84Google Scholar
  35. 35.
    Chen F, Zhao Y, Yuan Z. Langevin particle: A self adaptive lagrangian primitive for flow simulation enhancement. Comput Graph Forum, 2011, 30: 435–444CrossRefGoogle Scholar
  36. 36.
    Yuan Z, Zhao Y, Chen F. Incorporating stochastic turbulence in particle-based fluid simulation. Vis Comput, 2012, 28: 435–444CrossRefGoogle Scholar
  37. 37.
    Yoon J C, Kam H R, Hong J M, et al. Procedural synthesis using vortex particle method for fluid simulation. Comput Graph Forum, 2009, 28: 1853–1859CrossRefGoogle Scholar
  38. 38.
    Jang T, Kim H, Bae J, et al. Multi-level vorticity confinement for water turbulence simulation. Vis Comput, 2010, 26: 873–881CrossRefGoogle Scholar
  39. 39.
    Solenthaler B, Gross M. Two-scale particle simulation. ACM Trans Graph, 2011, 81: 1–8CrossRefGoogle Scholar
  40. 40.
    Lorensen W, Cline H. Marching cubes: a high resolution 3d surface construction algorithm. Comput Graph, 1987, 21: 163–169CrossRefGoogle Scholar
  41. 41.
    Yu J, Truk G. Reconstructing surfaces of particle based fluids using anisotropic kernels. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Madrid, 2010. 217–225Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jian Zhu
    • 1
  • YouQuan Liu
    • 3
  • YuanZhang Chang
    • 1
  • EnHua Wu
    • 1
    • 2
  1. 1.Computer Graphics and Multimedia Laboratory(NG04), Faculty of Science and TechnologyUniversity of MacauMacao SARChina
  2. 2.State Key Laboratory of Computer Science, Institute of SoftwareChinese Academy of SciencesBeijingChina
  3. 3.School of Information EngineeringChang’an UniversityXi’anChina

Personalised recommendations