Science China Information Sciences

, Volume 56, Issue 12, pp 1–9 | Cite as

Effect of atmospheric turbulence on the orbital angular momentum of hollow vortex beams

  • XiZheng Ke
  • Juan ChenEmail author
  • Hong Lv
Research Paper


The phase fluctuation of Laguerre-Gaussian (LG) vortex beams induced by atmospheric turbulence affects the quantum phase associated with azimuth coordinates and affects the orbital angular momentum of the vortex beams. The measurement of orbital angular momentum is affected by the change in the classical phase and the quantum phase in the Hilbert space. This paper analyzes the additional random complex phase of the vortex beam generated by the atmospheric turbulence and discusses the effect of atmospheric turbulence on the orbital angular momentum of an LG vortex beam using the photon state-vector function. The distributions of the classical phase of vortex beams affected by turbulence of different strengths are calculated and compared with the case for LG vortex beams transmitted through free space. Results show that the atmospheric turbulence affects the phase value of LG vortex beams transmitted in the external field and significantly affects the beam phase structure in the near field. However, the effect of turbulence on the phase of vortex beams is insignificant for a transmission range z > 2000 m while the phase values vary slowly and gradually become constant.


turbulence effect vortex beam orbital angular momentum phase fluctuation quantum phase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Molina-Terriza G, Torres J P, Torner L. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys Rev Lett, 2002, 88: 013601CrossRefGoogle Scholar
  2. 2.
    Torner L, Torres J P, Carrasco S. Digital spiral imaging. Opt Express, 2005, 13: 873–881CrossRefGoogle Scholar
  3. 3.
    Neil A T, MacVicar I, Allen L, et al. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys Rev Lett, 2002, 88: 053601CrossRefGoogle Scholar
  4. 4.
    Cullet P, Gil L, Rocca F. Optical vortices. Opt Commun, 1989, 73: 403–408CrossRefGoogle Scholar
  5. 5.
    Allen L, Lembessis V E, Babiker M. Spin-orit coupling in free-space Laguerre-Gaussian light beam. Phys Rev A, 1996, 53: R2937–R2939CrossRefGoogle Scholar
  6. 6.
    Gibson G, Courtial J, Padgett M J. Free-space information transferusing light beams carrying orbital angular momentum. Opt Express, 2004, 12: 5448–5456CrossRefGoogle Scholar
  7. 7.
    Andrews L C, Phillips R L. Laser Beam Propagation through Random Media. Bellingham: SPIE Optical Engineering Press, 1998Google Scholar
  8. 8.
    Wheelon A D. Electromagnetic Scintillation II: Weak Scattering. Cambridge: Cambridge University Press, 2003CrossRefGoogle Scholar
  9. 9.
    Xing J B, Xu G L, Zhang X P, et al. Effect of the atmospheric turbulence on laser communication system. Acta Photonica Sin, 2005, 34: 1850–1852Google Scholar
  10. 10.
    Qian X M, Zhu W Y, Rao R Z. Numerical simulation of turbulent effects of laser propagation along a ground-space slant atmospheric path. Infrared Laser Eng, 2008, 37: 787–792Google Scholar
  11. 11.
    Yi X X, Guo L X, Wu Z S. Study on the optical scintillation for Gaussian beam propagation in the slant path through the atmospheric turbulence. Acta Opt Sin, 2005, 25: 433–439Google Scholar
  12. 12.
    Huang Y B, Wang Y J. Numerical analysis of the scaling laws about focused beam spreading induced by the atmosphere. Acta Phys Sin, 2006, 55: 6715–6719Google Scholar
  13. 13.
    Ji X L, Huang T X, Lv B D. Spreading of partially coherent cosh-Gaussian beams propagating through turbulent atmosphere. Acta Phys Sin, 2006, 55: 978–982Google Scholar
  14. 14.
    Paterson C. Atmospheric turbulence and orbital angular momentum of singer for optical communication. Phys Rev Lett, 2005, 94: 153901CrossRefGoogle Scholar
  15. 15.
    Zhang Y X, Wang G G. Partially coherence vortex beams propagation in a turbulent atmosphere. Chin Opt Lett, 2005, 3: 559–561Google Scholar
  16. 16.
    Wang T, Pu J X, Rao L Z. Propagation of partially coherent vortex beams in the turbulent atmosphere. Opt Tech, 2007, 33: 4–9Google Scholar
  17. 17.
    Anguita J A M, Neifeld A, Vasic B V. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link. Appl Opt, 2008, 47: 2414–2429CrossRefGoogle Scholar
  18. 18.
    Cang J, Zhang Y X, Xu J C. Intensity distribution of focused hollow vortex beams with a Gaussian background in turbulent atmosphere. Acta Photonica Sin, 2009, 38: 2122–2125Google Scholar
  19. 19.
    Zhao G Y, Zhang Y X, Wang J Y, et al. Defocus and astigmatic aberration of the turbulent atmosphere and the intensity distribution of a vortex carrying Gaussian beam. Acta Phys Sin, 2009, 59: 1378–1384Google Scholar
  20. 20.
    Xu J C, Zhang Y X, Zhu ZW, et al. Effect of atmospheric turbulence on photon states in single photon communication. Laser Technol, 2010, 34: 839–842Google Scholar
  21. 21.
    ITU-R. On propagation data and prediction methods required for the desigh of space-to-earth and earth-to-space optical communication systems. In: Radio Commuication Study Group Meeting, Budapest, 2001Google Scholar
  22. 22.
    Lukin V P. Atmospheric Adaptive Optics. Washington: SPIE Press, 1995Google Scholar
  23. 23.
    Andrews L C, Phillips R L. Beam Propagation through Random Media. Washington: SPIE Press, 2005CrossRefGoogle Scholar
  24. 24.
    Saleh B E A, Teich M C. Fundamentals of Photonics. New York: Wiley, 1991CrossRefGoogle Scholar
  25. 25.
    Yao Z X, Zho J W, Mao B N, et al. Unusual photons with unusual angular momentum. Sci China-Phys Mech Astron, 2009, 39: 669–680Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.The Faculty of Automation & Information EngineeringXi’an University of TechnologyXi’anChina

Personalised recommendations