Science China Information Sciences

, Volume 56, Issue 2, pp 1–13 | Cite as

Statistically robust resource allocation for distributed multi-carrier cooperative networks

  • ChengWen Xing
  • ZeSong Fei
  • Na Li
  • YanTao Han
  • Danyo Danev
  • JingMing Kuang
Research Paper Special Issue

Abstract

In this paper, we investigate joint subcarrier and power allocation scheme for distributed multicarrier cooperative networks with imperfect channel state information. Using practical channel estimation algorithms, the statistic model of the channel estimation error is first derived. Then based on the channel error model, the resource allocation scheme aims at maximizing the sum rate of the overall network. Specifically, both subcarrier allocation and power allocation are taken into account. In the subcarrier allocation, a realistic problem of the power leakage between neighboring subcarriers is also addressed. Furthermore, based on Lagrange dual-decomposition algorithm, a practical power allocation algorithm is proposed. Finally, the simulation results demonstrate the performance advantages of the proposed robust design.

Keywords

efficient resource assignment robust power allocation orthogonal frequency division multiple access cooperative radio multi-carrier 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Doufexi A, Armour S. Design considerations and physical-layer performance results for 4G OFDMA system employing dynamic subcarrier allocation. In: IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Berlin, 2005. 357–361Google Scholar
  2. 2.
    Wha S J, Sang S J, Dong G J. Efficient resource allocation for OFDMA-based two-hop relay systems. IEEE Trans Veh Technol, 2011, 60: 2378–2383CrossRefGoogle Scholar
  3. 3.
    Bulakci O, Saleh A B, Redana S, et al. Flexible backhaul resource sharing and uplink power control optimization in LTE-advanced relay networks. In: Proceedings of IEEE Vehicular Technology Conference, San Francisco, 2011. 1–6Google Scholar
  4. 4.
    Pan Y W, Nix A, Beach M. Distributed resource allocation for OFDMA-based relay networks. IEEE Trans Veh Technol, 2011, 60: 919–931CrossRefGoogle Scholar
  5. 5.
    Song G, Li Y. Cross-layer optimization for OFDM wireless networks, part II: algorithm development. IEEE Trans Wirel Commun, 2005, 4: 614–624CrossRefGoogle Scholar
  6. 6.
    Pan Y W, Nix A, Beach M. Distributed resource allocation for OFDMA-based relay networks. IEEE Trans Veh Technol, 2011, 60: 919–931CrossRefGoogle Scholar
  7. 7.
    Wong C Y, Cheng R S, Letaief K B. Multiuser OFDM with adaptive subcarrier, bit and power allocation. IEEE J Sel Areas Commun, 1999, 17: 1747–1758CrossRefGoogle Scholar
  8. 8.
    Rhee W, Cioffi J M. Increase in capacity of multiuser OFDM system using dynamic subchannel allocation. In: Proceedings of IEEE Vehicular Technology Conference, Tokyo, 2000. 1085–1089Google Scholar
  9. 9.
    Jang J, Lee K B. Transmit power adaptation for multiuser OFDM systems. IEEE J Sel Areas Commun, 2003, 21: 171–178CrossRefGoogle Scholar
  10. 10.
    Laneman J N, Tse D N C, Wornell G W. Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans Inf Theory, 2004, 50: 3062–3080MathSciNetCrossRefGoogle Scholar
  11. 11.
    Yu G D, Zhang Z Y, Chen Y, et al. Power allocation for non-regenerative OFDM relaying channels. In: Proceedings of IEEE Wireless Communications, Networking and Mobile Computing, Wuhan, 2005. 185–188Google Scholar
  12. 12.
    Cui Y, Lau V K N, Wang R. Distributive subband allocation, power and rate control for relay-assisted OFDMA cellular system with imperfect system state knowledge. IEEE Trans Wirel Commun, 2009, 8: 5096–5102CrossRefGoogle Scholar
  13. 13.
    She J, Yu G, Zhang Z, et al. Resource allocation in OFDM based multihop wireless networks. In: Proceedings of IEEE Vehicular Technology Conference, Melbourne, 2006. 319–323Google Scholar
  14. 14.
    Kwak R, Cioffi J M. Resource-allocation for OFDMA multi-hop relaying downlink systems. In: Proceedings of IEEE Global Telecommunications Conference, Washington DC, 2007. 3225–3229Google Scholar
  15. 15.
    Baum D S, Hansen J, Salo J. An interim channel model for beyond-3G systems: extending the 3GPP spatial channel model (SCM). In: Proceedings of IEEE Vehicular Technology Conference, Stockholm, 2005. 3132–3136Google Scholar
  16. 16.
    Mallik R K, Winters J H. Optimum receiver for a realistic transmitCreceive diversity system in correlated fading. IEEE Trans Inf Theory, 2008, 54: 5456–5468MathSciNetCrossRefGoogle Scholar
  17. 17.
    Stuber G L. Principles of Mobile Communication. 2nd ed. Dordrecht: Kluwer Academic, 2001Google Scholar
  18. 18.
    Gora J, Redana S. Resource management issues for multi-carrier relay-enhanced systems. EURASIP J Wirel Commun Netw, 2012: 124Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • ChengWen Xing
    • 1
  • ZeSong Fei
    • 1
  • Na Li
    • 1
  • YanTao Han
    • 1
  • Danyo Danev
    • 2
  • JingMing Kuang
    • 1
  1. 1.School of Information Science and EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.Department of Electrical Engineering (ISY)Linköping UniversityLinköpingSweden

Personalised recommendations