Science China Information Sciences

, Volume 56, Issue 10, pp 1–10 | Cite as

Integrating local and partial network view for routing on scale-free networks

  • MingDong Tang
  • GuoQiang ZhangEmail author
  • Yi Sun
  • JianXun Liu
  • Jing Yang
  • Tao Lin
Research Paper


Traditional routing schemes, such as OSPF, optimize data plane routing efficiency by maintaining full view of the network at the control plane. However, maintaining full network view and handling frequent routing information updates are costly in large-scale complex networks, which are considered to be the root causes for the routing scalability issue. Recently, it is suggested that routing on local or partial information is plausible if slight performance degradation is acceptable. This paper proposes a routing scheme, operating on an integrated network view at each node that consists of its local neighborhood and a globally unique skeleton tree. This scheme significantly reduces storage, communication and processing costs. On scale-free networks, this benefit only comes at the cost of marginal performance degradation, which implies that it is not worthwhile to do shortest path routing based on full view of the network on scale-free networks. In contrast, the routing efficiency is severely aggravated on purely random networks, indicating the inappropriateness of this scheme and the rationality of maintaining full network view on random networks.


routing scale-free networks complex networks power-law 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moy J. OSPF Version 2. IETF RFC2328. 1998Google Scholar
  2. 2.
    Krioukov D, Fall K, Claffy K. Scalability of routing: compactness and dynamics. 2006Google Scholar
  3. 3.
    Levchenko K, Voelker G M, Paturi R, et al. XL: an efficient network routing algorithm. In: Proceedings of ACM SIGCOMM 2008. New York: ACM Press, 2008. 15–26CrossRefGoogle Scholar
  4. 4.
    Kleinberg J. Navigation in a small world. Nature, 2000, 406: 845CrossRefGoogle Scholar
  5. 5.
    Fraignaiaud, Giakkoupis G. On the searchability of small-world networks with arbitrary underlying structure. In: Proceedings of the 42th ACM Symposium on Theory of Computing(STOC’10). New York: ACM Press, 2010. 389–398CrossRefGoogle Scholar
  6. 6.
    Dragan F F, Matamala M. Navigating in a graph by aid of its spanning tree. LNCS, 2008, 5369: 789–800MathSciNetGoogle Scholar
  7. 7.
    Kleinberg R. Geographic routing using hyperbolic space. In: Proceedings of IEEE INFOCOM 2007. Washington D.C.: IEEE Computer Society Press, 2007. 1902–1909CrossRefGoogle Scholar
  8. 8.
    Yin C Y, Wang B H, Wang W X, et al. Efficient routing on scale-free networks based on local information. Phys Lett A, 2006, 351: 220–224CrossRefzbMATHGoogle Scholar
  9. 9.
    Wang W X, Wang B H, Yin C Y, et al. Traffic dynamics based on local routing protocol on a scale-free network. Phys Rev E, 2006, 73: 026111CrossRefGoogle Scholar
  10. 10.
    Yang S J. Exploring complex networks by walking on them. Phys Rev E, 2005, 71: 16107CrossRefGoogle Scholar
  11. 11.
    Adamic L, Lukose R M, Puniyani A R, et al. Search in power-law networks. Phys Rev E, 2001, 64: 046135CrossRefGoogle Scholar
  12. 12.
    Clausen T, Jacquet P. Optimized link state routing protocol(OLSR). IETF RFC3626. 2003Google Scholar
  13. 13.
    Jacquet P, Viennot L. Remote-spanners: what to know beyond neighbors. In: Proceedings of IEEE International Symposium on Parallel&Distributed Processing 2009. Washington D. C.: IEEE Computer Society Press, 2009. 1–15CrossRefGoogle Scholar
  14. 14.
    Jacquet P, Minet P, Muhlethaler P, et al. Data transfer in HIPERLAN. Wireless Pers Commun, 1997, 4: 65–80CrossRefGoogle Scholar
  15. 15.
    Newman M E J. The structure and function of complex networks. SIAM Rev, 2003, 45: 167–256MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the Internet topology. In: Proceedings of ACM SIGCOMM 1999. New York: ACM Press, 1999. 251–262Google Scholar
  17. 17.
    Zhang G Q, Quoitin B, Zhou S. Phase changes in the evolution of the IPv4 and IPv6 AS-level Internet topologies. Comput Commun, 2011, 34: 649–657CrossRefGoogle Scholar
  18. 18.
    Barabási A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286: 509–512MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zhang G Q. On cost-effective communication network designing. Europhys Lett, 2010, 89: 38003CrossRefGoogle Scholar
  20. 20.
    Yan G, Zhou T, Hu B, et al. Efficient routing on complex networks. Phys Rev E, 2006, 73: 046108CrossRefGoogle Scholar
  21. 21.
    Zhang G Q, Wang D, Li G J. Enhancing the transmission efficiency by edge deletion in scale-free networks. Phys Rev E, 2007, 76: 017101CrossRefGoogle Scholar
  22. 22.
    Sreenivasan S, Cohen R, López E, et al. Structural bottlenecks for communication in networks. Phys Rev E, 2007, 75: 036105CrossRefGoogle Scholar
  23. 23.
    Kim D H, Noh J D, Jeong H. Scale-free trees: the skeletons of complex networks. Phys Rev E, 2004, 70: 046126CrossRefGoogle Scholar
  24. 24.
    Freeman L C. Centrality in social networks: conceptual clarification. Soc Netw, 1979, 1: 215–239CrossRefGoogle Scholar
  25. 25.
    Borgatti S P. Centrality and network flow. Soc Netw, 2005, 27: 55–71CrossRefGoogle Scholar
  26. 26.
    Goh K I, Kahng B, Kim D. Universal behavior of load distribution in scale-free networks. Phys Rev Lett, 2001, 87: 278701CrossRefGoogle Scholar
  27. 27.
    Goh K I, Salvi G, Kahng B, et al. Skeleton and fractal scaling in complex networks. Phys Rev Lett, 2006, 96: 018701CrossRefGoogle Scholar
  28. 28.
    Metcalfe R M, Boggs D R. Ethernet: distributed packet switching for local computer networks. Commun ACM, 1976, 19: 395–404CrossRefGoogle Scholar
  29. 29.
    Lynch N A. Distributed Algorithms. San Mateo: Morgan Kaufmann Publishers, 1997. 81–95Google Scholar
  30. 30.
    Bollobas B. Random Grpahs. Cambridge: Cambridge University Press, 2001. 34–59CrossRefGoogle Scholar
  31. 31.
    Erdös P, Rényi A. On random graphs. Publ Math Debrecen, 1959, 6: 290–297MathSciNetzbMATHGoogle Scholar
  32. 32.
    Zhou S, Mondragón R. Accurately modeling the Internet topology. Phys Rev E, 2004, 70: 066108CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • MingDong Tang
    • 1
  • GuoQiang Zhang
    • 2
    • 3
    Email author
  • Yi Sun
    • 3
  • JianXun Liu
    • 1
  • Jing Yang
    • 4
  • Tao Lin
    • 5
  1. 1.Key Lab of Knowledge Processing and Networked ManufacturingHunan University of Science and TechnologyXiangtanChina
  2. 2.School of Computer Science and TechnologyNanjing Normal UniversityNanjingChina
  3. 3.Institute of Computing TechnologyChinese Academy of SciencesBeijingChina
  4. 4.China Mobile Research InstituteBeijingChina
  5. 5.Institute of AcousticsChinese Academy of SciencesBeijingChina

Personalised recommendations