Science China Information Sciences

, Volume 55, Issue 7, pp 1631–1638 | Cite as

Accountable authority key policy attribute-based encryption

Research Paper

Abstract

We present an accountable authority key policy attribute-based encryption (A-KPABE) scheme. In this paper, we extend Goyal’s work to key policy attribute-based encryption setting. We first generalize the notion of accountable authority in key policy attribute-based encryption scenario, and then give a construction. In addition, our scheme is shown to be secure in the standard model under the modified Bilinear Decisional Diffie-Hellman (mBDDH) assumption.

Keywords

accountable authority key policy attribute-based encryption standard model access structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sahai A, Waters B. Fuzzy identity based encryption. In: Proceedings of EUROCRYPT’05. LNCS, 3494. Berlin: Springer, 2005. 457–473Google Scholar
  2. 2.
    Goyal V, Pandey O, Sahai A, et al. Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security. New York: ACM Press, 2006. 89–98CrossRefGoogle Scholar
  3. 3.
    Bethencourt J, Sahai A, Waters B. Ciphertext-policy attribute-based encryption. In: Proceedings of 2007 IEEE Symposium on Security and Privacy. Washington: IEEE Computer Society, 2007. 321–334Google Scholar
  4. 4.
    Cheung L, Newport C. Porvably secure ciphertext policy ABE. In: Proceedings of the 14th ACM Conference on Computer and Communications Security. New York: ACM Press, 2007. 456–465CrossRefGoogle Scholar
  5. 5.
    Waters B. Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. Cryptology ePrint Archive, Report 2008/290Google Scholar
  6. 6.
    Attrapadung N, Imai H. Dual-policy attribute based encryption. In: Applied Cryptography and Network Security. LNCS, 5536. Berlin: Springer, 2009. 168–185CrossRefGoogle Scholar
  7. 7.
    Lewko A, Okamoto T, Sahai A, et al. Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Proceedings of EUROCRYPT 2010. LNCS, 6110. Berlin: Springer, 2010. 62–91Google Scholar
  8. 8.
    Shamir A. Identity-based cryptosystems and signature schemes. In: Proceedings of CRYPTO 1984. LNCS, 196. Berlin: Springer, 1984. 47–53Google Scholar
  9. 9.
    Boneh D, Franklin M. Identity based encryption from the Weil pairing. In: Proceedings of CRYPTO’01. LNCS, 2139. Berlin: Springer, 2001. 213–229Google Scholar
  10. 10.
    Waters B. Efficient identity-based encryption without random oracles. In: Proceedings of EUROCRYPT’05. LNCS, 3494. Berlin: Springer, 2005. 114–127Google Scholar
  11. 11.
    Goyal V. Reducing trust in the PKG in identity based cryptosystems. In: Proceedings of CRYPTO’07. LNCS, 4622. Berlin: Springer, 2007. 430–447Google Scholar
  12. 12.
    Gentry C. Practical identity-based encryption without random oracles. In: Proceedings of EUROCRYPT’06. LNCS, 4004. Berlin: Springer, 2006. 445–464Google Scholar
  13. 13.
    Goyal V, Lu S, Sahai A, et al. Black-box accountable authority identity-based encryption. In: Proceedings of the 15th ACM Conference on Computer and Communications Security. New York: ACM Press, 2008. 427–436CrossRefGoogle Scholar
  14. 14.
    Au M H, Huang Q, Liu J K, et al. Traceable and retrievable identity-based encryption. In: Applied Cryptography and Network Security-ACNS’08. LNCS, 5037. Berlin: Springer, 2008. 94–110CrossRefGoogle Scholar
  15. 15.
    Libert B, Vergnaud D. Towards black-box accountable authority IBE with short ciphertexts and private keys. In: Proceedings of PKC’09. LNCS, 5443. Berlin: Springer, 2009. 235–255Google Scholar
  16. 16.
    Li J, Ren K, Kim K. A2BE: accountable attribute-based encryption for abuse free access control. Cryptology ePrint Archive, Report 2009/118Google Scholar
  17. 17.
    Yu S, Ren K, Lou W, et al. Defending against key abuse attacks in KP-ABE enabled broadcast systems. In: Proceedings of SecureComm 2009. Berlin: Springer, 2009. 311–329Google Scholar
  18. 18.
    Kiltz E, Vahlis Y. CCA2 Secure IBE: standard model efficiency through authenticated symmetric encryption. In: Proceedings of CT-RSA’08. LNCS, 4964. Berlin: Springer, 2008. 221–238Google Scholar
  19. 19.
    Okamoto T. Provably secure and practical identification schemes and corresponding signature schemes. In: Proceedings of CRYPTO 1992. LNCS, 740. Berlin: Springer, 1993. 31–53Google Scholar
  20. 20.
    Pedersen T P. Non-interactive and information-theoretic secure verifiable secret sharing. In: Proceedings of CRYPTO 1991. LNCS, 576. Berlin: Springer, 1992. 129–140Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • YongTao Wang
    • 1
    • 2
  • KeFei Chen
    • 1
    • 3
  • Yu Long
    • 1
    • 4
  • ZhaoHui Liu
    • 2
  1. 1.Department of Computer Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.China Information Technology Security Evaluation CenterBeijingChina
  3. 3.Shanghai Key Laboratory of Scalable Computing and SystemsShanghai Jiao Tong UniversityShanghaiChina
  4. 4.State Key Laboratory of Information SecurityGraduate School of Chinese Academy of SciencesBeijingChina

Personalised recommendations