Science China Information Sciences

, Volume 55, Issue 5, pp 1201–1217

Markov chain approach to identifying Wiener systems

Research Paper

Abstract

Identification of the Wiener system composed of an infinite impulse response (IIR) linear subsystem followed by a static nonlinearity is considered. The recursive estimates for unknown coefficients of the linear subsystem and for the values of the nonlinear function at any fixed points are given by the stochastic approximation algorithms with expanding truncations (SAAWET). With the help of properties of the Markov chain connected with the linear subsystem, all estimates derived in the paper are proved to be strongly consistent. In comparison with the existing results on the topic, the method presented in the paper simplifies the convergence analysis and requires weaker conditions. A numerical example is given, and the simulation results are consistent with the theoretical analysis.

Keywords

Wiener system recursive identification stochastic approximation Markov chain strong consistency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhu Y. Distillation column identification for control using Wiener model. In: Proceedings of American Control Conference, San Diego, 1999. 55: 3462–3466Google Scholar
  2. 2.
    Kalafatis A, Arifin N, Wang L, et al. A new approach to the identification of pH processes based on the Wiener model. Chem Eng Sci, 1995, 50: 3693–3701CrossRefGoogle Scholar
  3. 3.
    Hunter I W, Korenberg M J. The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Bio Cybern, 1986, 55: 136–144Google Scholar
  4. 4.
    Bai E W. Frequency domain identification of Wiener models. Automatica, 2003, 39: 1521–1530MATHCrossRefGoogle Scholar
  5. 5.
    Boyd S, Chua L O. Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans Circ Syst, 1985, 32: 1150–1161MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Chen H F. Recursive identification for Wiener model with discontinuous piece-wise linear function. IEEE Trans Autom Control, 2006, 51: 390–400CrossRefGoogle Scholar
  7. 7.
    Greblicki W. Nonparametric approach to Wiener system identification. IEEE Trans Circuits Syst-I: Fundam Theory Appl, 1997, 44: 538–545MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hagenblad A, Ljung L, Wills A. Maximum likelihood identification of Wiener models. Automatica, 2008, 44: 2697–2705MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Hu X L, Chen H F. Strong consistence of recursive identification forWiener systems. Automatica, 2005, 41: 1905–1916MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Hu X L, Chen H F. Identification for Wiener systems with RTF subsystems. European J Control, 2006, 6: 581–594MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nordsjö A E, Zetterberg L H. Identification of certain time-varying nonlinear Wiener and Hammerstein systems. IEEE Trans Signal Process, 2001, 49: 577–592CrossRefGoogle Scholar
  12. 12.
    Verhaegen M, Westwick D. Identifying MIMO Wiener systems in the context of subspace model identificatin methods. Int J Control, 1996, 63: 331–349MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Vörös J. Parameter identification of Wiener systems with discontinuous nonlinearities. Syst Control Lett, 2001, 44: 363–372MATHCrossRefGoogle Scholar
  14. 14.
    Wigren T. Convergence analysis of recursive algorithms based on the nonlinear Wiener model. IEEE Trans Autom Control, 1994, 39: 2191–2206MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Chen H F, Guo L. Identification and Stochastic Adaptive Control. Boston: Birkhäuser, 1991MATHGoogle Scholar
  16. 16.
    Fan J Q, Yao Q. Nonlinear Time Series: Nonparametric and Parametric Approach. New York: Springer-Verlag, 2003MATHCrossRefGoogle Scholar
  17. 17.
    Ljung L. System Identification: Theory for Users. Upper Saddle River: Prentice Hall, 1987Google Scholar
  18. 18.
    Zhao W X, Chen H F, Zheng W X. Recursive identification for nonlinear ARX systems based on stochastic approximation algorithm. IEEE Trans Autom Control, 2010, 55: 1287–1299MathSciNetCrossRefGoogle Scholar
  19. 19.
    Bussgang J J. Crosscorrelation functions of amplitude-distorted Gaussian signals. Technical Report 216. MIT Research Laboratory of Electronics, 1952Google Scholar
  20. 20.
    Song Q J, Chen H F. Identification of errors-in-variables systems with ARMA observation noise. Syst Control Lett, 2008, 57: 420–424MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Ciarlet P G. Introduction to Numerical Linear Algebra and Optimisation. Cambridge: Cambridge University Press, 1989Google Scholar
  22. 22.
    Meyn S P, Tweedie R L. Markov Chains and Stochastic Stability. London: Springer-Verlag, 1993MATHGoogle Scholar
  23. 23.
    Davydov Yu A. Mixing conditions for Markov chains. SIAM Probability Appl, 1973, 18: 312–328MATHCrossRefGoogle Scholar
  24. 24.
    Nummelin E. General Irreducible Markov Chains and Non-negative Operators. Cambridge: Cambridge University Press, 1984MATHCrossRefGoogle Scholar
  25. 25.
    Tong H. Nonlinear Time Series. Oxford: Oxford University Press, 1990Google Scholar
  26. 26.
    Masry E, Györfi L. Strong consistency and rates for recursive probability density estimators of stationary processes. J Multivariate Analysis, 1987, 22: 79–93MATHCrossRefGoogle Scholar
  27. 27.
    Chen H F. Stochastic Approximation and Its Applications. Dordrecht: Kluwer, 2002MATHGoogle Scholar
  28. 28.
    Song Q J, Chen H F. Identification of Wiener systems with internal noise. J Syst Sci Complex, 2008, 21: 378–393MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Hirschman I I, Widder D V. The Convolution Transform. Princeton, NJ: Princeton University Press, 1955Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Key Laboratory of Systems and Control, Institute of Systems Science, AMSSChinese Academy of SciencesBeijingChina
  2. 2.National Center for Mathematics and Interdisciplinary SciencesChinese Academy of SciencesBeijingChina

Personalised recommendations