Science China Information Sciences

, Volume 55, Issue 5, pp 1062–1072 | Cite as

A particle-based method for granular flow simulation

  • YuanZhang Chang
  • Kai Bao
  • Jian Zhu
  • EnHua Wu
Research Paper Special Focus


We present a new particle-based method for granular flow simulation. In the method, a new elastic stress term, which is derived from a modified form of the Hooke’s law, is included in the momentum governing equation to handle the friction of granular materials. Viscosity force is also added to simulate the dynamic friction for the purpose of smoothing the velocity field and further maintaining the simulation stability. Benefiting from the Lagrangian nature of the SPH method, large flow deformation can be well handled easily and naturally. In addition, a signed distance field is also employed to enforce the solid boundary condition. The experimental results show that the proposed method is effective and efficient for handling the flow of granular materials, and different kinds of granular behaviors can be well simulated by adjusting just one parameter.


granular materials sand smoothed particle hydrodynamics SPH Hooke’s law animation simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Richard P, Nicodemi M, Delannay R, et al. Slow relaxation and compaction of granular systems. Nat Mat, 2005, 4: 121–128CrossRefGoogle Scholar
  2. 2.
    Müller M, Charypar D, Gross M. Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. San Diego: Eurographics Association, 2003. 154–159Google Scholar
  3. 3.
    Müller M, Solenthaler B, Keiser R, et al. Particle-based fluid-fluid interaction. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. New York: ACM, 2005. 237–244CrossRefGoogle Scholar
  4. 4.
    Müller M, Schirm S, Teschner M, et al. Interaction of fluids with deformable solids. Comp Anim Virt Worlds, 2004, 15: 159–171CrossRefGoogle Scholar
  5. 5.
    Chang Y Z, Bao K, Liu Y Q, et al. A particle-based method for viscoelastic fluids animation. In: Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology. New York: ACM, 2009. 111–117CrossRefGoogle Scholar
  6. 6.
    Clavet S, Beaudoin P, Poulin P. Particle-based viscoelastic fluid simulation. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. New York: ACM, 2005. 219–228CrossRefGoogle Scholar
  7. 7.
    Gerszewski D, Bhattacharya H, Bargteil A. A point-based method for animating elastoplastic solids. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. New York: ACM, 2009. 133–138CrossRefGoogle Scholar
  8. 8.
    Müller M, Keiser R, Nealen A, et al. Point based animation of elastic, plastic and melting objects. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville: Eurographics Association, 2004. 141–151CrossRefGoogle Scholar
  9. 9.
    Gao Y, Li C F, Hu S M, et al. Simulating gaseous fluids with low and high speeds. Comput Graph Forum, 2009, 28: 1845–1852CrossRefGoogle Scholar
  10. 10.
    Oh S, Kim Y, Roh B-S. Impulse-based rigid body interaction in SPH. Comp Anim Virt Worlds, 2009, 20: 215–224CrossRefGoogle Scholar
  11. 11.
    Becker M, Ihmsen M, Teschner M. Corotated SPH for deformable solids. In: Proceedings of Eurographics Workshop on Natural Phenomena. Munich: Eurographics Association, 2009. 27–34Google Scholar
  12. 12.
    Keiser R, Adams B, Gasser D, et al. A unified lagrangian approach to solid-fluid animation. In: Proceedings of the Symposium on Point-Based Graphics. Los Alamitos: IEEE Computer Society, 2005. 125–148CrossRefGoogle Scholar
  13. 13.
    Solenthaler B, Schläfli J, Pajarola R. A unified particle model for fluid-solid interactions. Comp Anim Virt Worlds, 2007, 18: 69–82CrossRefGoogle Scholar
  14. 14.
    Lenaerts T, Adams B, Dutré P. Porous flow in particle-based fluid simulations. In: ACM SIGGRAPH 2008. New York: ACM, 2008. 49:1–49:8CrossRefGoogle Scholar
  15. 15.
    Lenaerts T, Dutré P. Mixing fluids and granular materials. Comput Graph Forum, 2009, 28: 213–218CrossRefGoogle Scholar
  16. 16.
    Rungjiratananon W, Szego Z, Kanamori Y, et al. Real-time animation of sand-water interaction. Comput Graph Forum, 2008, 27:1887–1893CrossRefGoogle Scholar
  17. 17.
    Hong J M, Lee H Y, Yoon J C, et al. Bubbles alive. In: ACM SIGGRAPH 2008. New York: ACM, 2008. 48:1–48:4Google Scholar
  18. 18.
    Iwasaki K, Uchida H, Dobashi Y, et al. Fast particle-based visual simulation of ice melting. Comput Graph Forum, 2010, 29: 2215–2223CrossRefGoogle Scholar
  19. 19.
    Sumner R W, O’Brien J F, Hodgins J K, et al. Animating sand, mud, and snow. Comput Graph Forum, 1999, 18: 17–26CrossRefGoogle Scholar
  20. 20.
    Onoue K, Nishita T. Virtual sandbox. In: Proceedings of the 11th Pacific Conference on Computer Graphics and Applications. Washington: IEEE Computer Society, 2003. 252CrossRefGoogle Scholar
  21. 21.
    Bell N, Yu Y Z, Mucha P J. Particle-based simulation of granular materials. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. New York: ACM, 2005. 77–86CrossRefGoogle Scholar
  22. 22.
    Narain R, Golas A, Lin M C. Free-flowing granular materials with two-way solid coupling. In: ACM SIGGRAPH Asia 2010 papers. New York: ACM, 2010. 173:1–173:10CrossRefGoogle Scholar
  23. 23.
    Alduán I, Tena A, Otaduy M A. Simulation of high-resolution granular media. In: Proceedings of Congreso Español de Informática Gráfica. San Sebastián: Eurographics Association, 2009Google Scholar
  24. 24.
    Pla-Castells M, García-Fernández I, Martinez-Dura R J. Physically-based interactive sand simulation. In: Eurographics 2008. Crete: Eurographics Association, 2008. 21–24Google Scholar
  25. 25.
    Zhu B, Yang X B. Animating sand as a surface flow. In: Eurographics 2010. Norrkoping: Eurographics Association, 2010Google Scholar
  26. 26.
    Zhu Y N, Bridson R. Animating sand as a fluid. In: ACM SIGGRAPH 2005. New York: ACM, 2005. 965–972CrossRefGoogle Scholar
  27. 27.
    Stellingwerf R F, Wingate C A. Impact modeling with smooth particle hydrodynamics. Int J Impact Eng, 1993, 14: 707–718CrossRefGoogle Scholar
  28. 28.
    Benz W, Asphaug E. Simulations of brittle solids using smooth particle hydrodynamics. Comput Phys Comm, 1995, 87: 253–265zbMATHCrossRefGoogle Scholar
  29. 29.
    Gray J P, Monaghan J J, Swift R P. SPH elastic dynamics. Comput Meth Appl Mech Eng, 2001, 190: 6641–6662zbMATHCrossRefGoogle Scholar
  30. 30.
    Cleary P W, Prakash M, Ha J. Novel applications of smoothed particle hydrodynamics (SPH) in metal forming. J Mater Process Tech, 2006, 177: 41–48CrossRefGoogle Scholar
  31. 31.
    Cleary P W, Das R. The potential for SPH modelling of solid deformation and fracture. In: IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media. Cape Town: Springer, 2008. 287–296CrossRefGoogle Scholar
  32. 32.
    Cleary P W. Elastoplastic deformation during projectile-wall collision. Appl Math Model, 2010, 34: 266–283MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Desbrun M, Cani M-P. Smoothed particles: A new paradigm for animating highly deformable bodies. In: Eurographics Workshop on Computer Animation and Simulation. Poitiers: Springer-Verlag, 1996. 61–76Google Scholar
  34. 34.
    Adams B, Pauly M, Keiser R, et al. Adaptively sampled particle fluids. In: ACM SIGGRAPH 2007. New York: ACM, 2007. 48:1–48:8Google Scholar
  35. 35.
    Courant R, Friedrichs K, Lewy H. On the partial difference equations of mathematical physics. IBM J Res Dev, 1967, 11: 215–234MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • YuanZhang Chang
    • 1
  • Kai Bao
    • 2
    • 3
  • Jian Zhu
    • 1
  • EnHua Wu
    • 1
    • 2
  1. 1.Department of Computer and Information ScienceUniversity of MacauMacaoChina
  2. 2.State Key Laboratory of Computer Science, Institute of SoftwareChinese Academy of SciencesBeijingChina
  3. 3.Division of Mathematical and Computer Sciences & EngineeringKAUSTThuwalSaudi Arabia

Personalised recommendations