Science China Information Sciences

, Volume 55, Issue 10, pp 2369–2389 | Cite as

Lion pride optimizer: An optimization algorithm inspired by lion pride behavior

  • Bo Wang
  • XiaoPing Jin
  • Bo Cheng
Research Paper


In this paper, we report a novel optimization algorithm, lion pride optimizer (LPO), which is inspired by lion pride behavior. The framework is mainly based on lion prides’ evolution process and group living theory. In a lion pride, brutal competition of individuals happens among male lions both within and among prides; on the other hand, each member plays an important role in the persistence of a lion pride. Based on this framework, concepts from lion prides behavior, e.g., the strongest males occupy nearly all mating resources, and if a new cohort of males is able to take over a pride, they will seek to kill young cubs sired by their predecessors, are employed metaphorically to design optimum searching strategies for solving continuous optimization problems. From the studies of the algorithm property, it is found that the LPO algorithm is not sensitive to most parameters, which shows the robustness of the algorithm and the parameters are not problemdependent. Central tendency of the algorithm is not found. It is found that the pride update strategy and brutal competition of individuals are two main factors that contribute to the performance of LPO. According to the test results on 23 famous benchmark functions, the LPO algorithm has better performance than the other seven state-of-the-art algorithms on both unimodal and multimodal benchmark functions; in the test of high-dimensional multimodal problems, LPO outperforms the other five algorithms on all benchmark functions.


animal behavior evolutionary algorithm lion pride optimization swarm intelligence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour. Nature, 2000, 406: 39–42CrossRefGoogle Scholar
  2. 2.
    He S, Wu Q H, Saunders J R. Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evol Comput, 2009, 13: 973–990CrossRefGoogle Scholar
  3. 3.
    Barnard C J, Sibly R M. Producers and scroungers: A general model and its application to captive flocks of house sparrows. Anim Behav, 1981, 29: 543–550CrossRefGoogle Scholar
  4. 4.
    Holland J H. Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press, 1975Google Scholar
  5. 5.
    Shiu Y Y, Chi K C. A genetic algorithm that adaptively mutates and never revisits. IEEE Trans Evol Comput, 2009, 13: 454–472CrossRefGoogle Scholar
  6. 6.
    Eiben A E, Smith J E. Introduction to Evolutionary Computing. New York: Springer, 2003zbMATHGoogle Scholar
  7. 7.
    Yao X, Liu Y, Liu G. Evolutionary programming made faster. IEEE Trans Evol Comput, 1999, 3: 82–102CrossRefGoogle Scholar
  8. 8.
    Eiben A E, Hinterding R, Michalewicz Z. Parameter control in evolutionary algorithms. IEEE Trans Evol Comput, 1999, 3: 124–141CrossRefGoogle Scholar
  9. 9.
    Mauldin M L. Maintaining diversity in genetic search. In: Proceedings of National Conference on Artificial Intelligence, Austin, USA, 1984. 247–250Google Scholar
  10. 10.
    Davis L. Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold, 1991Google Scholar
  11. 11.
    Friedrich T, Hebbinghaus N, Neumann F. Rigorous analyses of simple diversity mechanisms. In: Proceedings of Genetic Evolutionary Computation Conference, London, UK, 2007. 1219–1225Google Scholar
  12. 12.
    Goldberg D E, Richardson J. Genetic algorithms with sharing for multimodal function optimization. In: Proceedings of International Conference on Genetic Algorithms, Cambridge, USA, 1987. 41–49Google Scholar
  13. 13.
    Alba E, Tomassini M. Parallelism and evolutionary algorithms. IEEE Trans Evol Comput, 2002, 6: 443–462CrossRefGoogle Scholar
  14. 14.
    Xin B, Chen J, Peng Z H, et al. An adaptive hybrid optimizer based on particle swarm and differential evolution for global optimization. Sci China Inf Sci, 2010, 53: 980–989MathSciNetCrossRefGoogle Scholar
  15. 15.
    Tassing R, Guo L, Liu J, et al. Gene sorting in differential evolution with cross-generation mutation. Sci China Inf Sci, 2011, 54: 268–278MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    David M, Manu D B, Raf H, et al. Classification with ant colony optimization. IEEE Trans Evol Comput, 2007, 11: 651–665CrossRefGoogle Scholar
  17. 17.
    AlRashidi M R, El-Hawary M E. A survey of particle swarm optimization applications in electric power systems. IEEE Trans Evol Comput, 2009, 13: 913–918CrossRefGoogle Scholar
  18. 18.
    Valle Y D, Venayagamoorthy G K, Mohagheghi S, et al. Particle swarm optimization: Basic concepts, variants and applications in power systems. IEEE Trans Evol Comput, 2008, 12: 171–195CrossRefGoogle Scholar
  19. 19.
    Linhares A. Synthesizing a predatory search strategy for VLSI layouts. IEEE Trans Evol Comput, 1999, 3: 147–152CrossRefGoogle Scholar
  20. 20.
    Ray T, Liew K M. Society and civilization: An optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput, 2003, 7: 386–396CrossRefGoogle Scholar
  21. 21.
    Laumanns M, Rudolph G, Schwefel H P. A spatial predator-prey approach to multiobjective optimization: A preliminary study. In: Proceedings of Parallel Problem Solving From Nature-PPSN V, Amsterdam, the Netherlands, 1998. 1498: 241–249CrossRefGoogle Scholar
  22. 22.
    Passino K M. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag, 2002, 22: 52–67CrossRefGoogle Scholar
  23. 23.
    Dasgupta S, Das S, Abraham A, et al. Adaptive computational chemotaxis in bacterial foraging optimization: an analysis. IEEE Trans Evol Comput, 2009, 13: 919–941CrossRefGoogle Scholar
  24. 24.
    Muller S D, Marchetto J, Airaghi S, et al. Optimization based on bacterial chemotaxis. IEEE Trans Evol Comput, 2002, 6: 16–29CrossRefGoogle Scholar
  25. 25.
    McComb K, Packer C, Pusey A. Roaring and numerical assessment in contests between groups of female lions (Panthera leo). Anim Behav, 1994, 47: 379–387CrossRefGoogle Scholar
  26. 26.
    Parker C. Infanticide is no fallacy. Am Anthropol, 2000, 102: 829–831CrossRefGoogle Scholar
  27. 27.
    Bygott J D, Bertram B C R, Hanby J P. Male lions in large coalitions gains reproductive advantages. Nature, 1979, 282: 839–841CrossRefGoogle Scholar
  28. 28.
    Yao X, Liu Y. Fast evolution strategies. In: Proceedings of Evolutionary Programming VI. Berlin: Springer-Verlag, 1997. 151–161Google Scholar
  29. 29.
    Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput, 2006, 10: 281–295CrossRefGoogle Scholar
  30. 30.
    Pusey A E, Packer C. The evolution of sex biased dispersal in lions. Behaviour, 1987, 101: 275–310CrossRefGoogle Scholar
  31. 31.
    Mosser A, Packer C. Group territoriality and the benefits of sociality in the African lion, Panthera leo. Anim Behav, 2009, 78: 359–370CrossRefGoogle Scholar
  32. 32.
    Kissui B M, Mosser A, Packer C. Persistence and local extinction of lion prides in the Ngorongoro Crater, Tanzania. Popul Ecol, 2010, 52: 103–111CrossRefGoogle Scholar
  33. 33.
    Wolpert D H, Macready W G. No free lunch theorems for search. IEEE Trans Evol Comput, 1997, 1: 67–82CrossRefGoogle Scholar
  34. 34.
    Töm A, Zilinskas A. Global Optimization. LNCS, vol. 350. Berlin: Springer-Verlag, 1989Google Scholar
  35. 35.
    Fogel L J, Owens A J, Walsh M J. Artificial intelligence through a simulation of evolution. In: Maxfield M, Callahan A, Fogel L J, eds. Biophysics and Cybernetic Systems: Proceedings of the Second Cybernetic Sciences Symposium. Washington: Spartan Books, 1965. 131–155Google Scholar
  36. 36.
    Fogel D B. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. New York: IEEE Press, 1995Google Scholar
  37. 37.
    Schwefel H P. Evolution and Optimum Seeking. New York: Wiley, 1995Google Scholar
  38. 38.
    Kennedy J, Eberhart R C. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4. Piscataway: IEEE Press, 1995. 1942–1948Google Scholar
  39. 39.
    Yao X, Liu Y. Scaling up evolutionary programming algorithms. In: Proceedings of the 7th Annual Conference on Evolutionary Programming, LNCS. Berlin: Springer-Verlag, 1998. 103–112CrossRefGoogle Scholar
  40. 40.
    Liu Y, Yao X, Zhao Q, et al. Scaling up fast evolutionary programming with cooperative coevolution. In: Proceedings of the 2001 Congress on Evolutionary Computation. Piscataway: IEEE Press, 2001. 1101–1108Google Scholar
  41. 41.
    Lasserre J B. Global optimization with polynomials and the problem of moments. SIAM J Optimiz, 2001, 11: 796–817MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Barhen J, Protopopescu V, Reister D. Trust: A deterministic algorithm for global optimization. Science, 1997, 276: 1094–1097MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Reynolds C W. Flocks, herds and schools: A distributed behavioral model. Comput Graph, 1987, 21: 25–34CrossRefGoogle Scholar
  44. 44.
    Heppner F, Grenander U. A stochastic nonlinear model for coordinated bird flocks. In: The Ubiquity of Chaos. Washington: AAAS Publications, 1990Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Automotive Safety and EnergyTsinghua UniversityBeijingChina

Personalised recommendations