Science China Information Sciences

, Volume 55, Issue 2, pp 461–472 | Cite as

Memristive crossbar array with applications in image processing

  • XiaoFang Hu
  • ShuKai DuanEmail author
  • LiDan Wang
  • XiaoFeng Liao
Research Paper


A memristor is a kind of nonlinear resistor with memory capacity. Its resistance changes with the amount of charge or flux passing through it. As the fourth fundamental circuit element, it has huge potential applications in many fields, and has been expected to drive a revolution in circuit theory. Through numerical simulations and circuitry modeling, the basic theory and properties of memristors are analyzed, and a memristorbased crossbar array is then proposed. The array can realize storage and output for binary, grayscale and color images. A series of computer simulations demonstrates the effectiveness of the proposed scheme. Owing to the advantage of the memristive crossbar array in parallel information processing, the proposed method is expected to be used in high-speed image processing.


memristor crossbar array modeling and simulation image storage image output 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chua L O. Memristor-The missing circuit element. IEEE Trans Circuit Theory, 1971, 18: 507–519CrossRefGoogle Scholar
  2. 2.
    Chua L O, Kang S K. Memristive devices and systems. Proceed IEEE, 1976, 64: 209–223MathSciNetCrossRefGoogle Scholar
  3. 3.
    Strukov D B, Snider G S, Stewart D R, et al. The missing memristor found. Nature, 2008, 453: 80–83CrossRefGoogle Scholar
  4. 4.
    Williams R S. How we found the missing memristor. IEEE Spectrum, 2008, 45: 29–35CrossRefGoogle Scholar
  5. 5.
    Lewis D L, Lee H H S. Architectural evaluation of 3D stacked RRAM caches. In: 3D System Integration Conference, IEEE, San Francisco, CA, 2009. 1–4CrossRefGoogle Scholar
  6. 6.
    Lu W, Xiong Y, Hassanien A, et al. A scanning probe microscopy based assay for single-walled carbon nanotube metallicity. Nano Lett, 2009, 9: 1668–1672CrossRefGoogle Scholar
  7. 7.
    Jo S H, Kim K H, Lu W. High-density crossbar arrays based on a Si memristive system. Nano Lett, 2009, 9: 870–874CrossRefGoogle Scholar
  8. 8.
    Jo S H, Chang T, Ebong I, et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett, 2010, 10: 1297–1301CrossRefGoogle Scholar
  9. 9.
    Afifi A, Ayatollahi A, Raissi F. Implementation of biologically plausible spiking neural network models on the memristor crossbar based CMOS/nano circuit. In: European Conference on Circuit Theory and Design (ECCTD), Antalya, 2009. 563–566Google Scholar
  10. 10.
    Tulina N A, Borisenko I Y, Sirotkin V V. Reproducible resistive switching effect for memory applications in heterocontacts based on strongly correlated electron systems. Phys Lett A, 2008, 372: 6681–6686CrossRefGoogle Scholar
  11. 11.
    Raja T, Mourad S. Digital logic implementation in memristor-based crossbars-A tutorial. In: Electronic Design, Test & Applications Symposium, IEEE, Ho Chi Minh City, Vietnam, 2010. 303–309Google Scholar
  12. 12.
    Yang J J, Pickett M D, Li X M, et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnol, 2008, 3: 429–433CrossRefGoogle Scholar
  13. 13.
    Wu J, McCreery R L. Solid-state electrochemistry in molecule/TiO2 molecular hetero junctions as the basis of the TiO2 “Memristor”. J Electrochem Soc, 2009, 156: 29–37CrossRefGoogle Scholar
  14. 14.
    Vontobel P O, Robinett W, Kuekes P J, et al. Writing to and reading from a nano-scale crossbar memory based on memristors. Nanotechnology, 2009, 20: 5204–5225CrossRefGoogle Scholar
  15. 15.
    Blanc J, Staebler D L. Electrocoloration in SrTiO3: Vacancy drift and oxidation-reduction of transition metals. Phys Rev B, 1971, 4: 3548–3557CrossRefGoogle Scholar
  16. 16.
    Kavehei O, Iqbal A, Kim Y S, et al. The fourth element: Characteristics, modelling, and electromagnetic theory of the memristor. Proc R Soc A, 2010, 466: 2175–2202MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Biolek Z, Biolek D, Biolková V. SPICE Model of memristor with nonlinear dopant drift. Radioengineering, 2009, 18: 210–214Google Scholar
  18. 18.
    Zhang Y D, Wu L N, Wang S H, et al. Color image enhancement based on HVS and PCNN. Sci China Inf Sci, 2010, 53: 1963–1976MathSciNetCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • XiaoFang Hu
    • 1
  • ShuKai Duan
    • 1
    Email author
  • LiDan Wang
    • 1
  • XiaoFeng Liao
    • 1
  1. 1.School of Electronics and Information EngineeringSouthwest UniversityChongqingChina

Personalised recommendations