Science China Information Sciences

, Volume 54, Issue 8, pp 1547–1561 | Cite as

Asynchronous cooperative communication systems: A survey on signal designs

Review

Abstract

Cooperative communications is a promising technique for future high speed wireless communications. These systems may be formulated as virtual multi-input multi-output (MIMO) systems where spatial/cooperetive diversity is a key advantage. However, different from MIMO systems, one of the major challenges for cooperative communications systems is that the cooperative transmissions in cooperative systems may be neither time nor frequency synchronized, since the transmissions are from multiple cooperative nodes at different locations. The existing signal designs for co-located MIMO systems may not be able to collect the cooperative diversity in cooperative communications systems. This paper gives an overview of recent research efforts on combating the time and frequency asynchronism of the cooperative communication network. We focus on the signal designs (or space-time codings/modulations) to achieve full cooperative diversity, and summarize some of the resent distributed space-timing coding and space-frequency coding techniques to combat timing errors and frequency offsets, and in the meantime to achieve full cooperative diversity, in both one-way and two-way cooperative networks.

Keywords

cooperative communications time and frequency offsets space-time coding space-frequency codes full cooperative diversity linear receiver 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Telatar E. Capacity of multi-antenna Gaussian channels. European Trans Telecom, 1999, 10: 585–595CrossRefGoogle Scholar
  2. 2.
    Foschini G J, Gans M J. On limits of wireless communications in a fading environment when using multiple antennas. Wirel Pers Commun, 1998, 6: 311–335CrossRefGoogle Scholar
  3. 3.
    Tarokh V, Seshadri N, Calderbank A R. Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Trans Inform Theory, 1998, 44: 744–765MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Alamouti S M. A simple transmit diversity technique for wireless communications. IEEE J Select Area Commun, 1998, 16: 1451–1458CrossRefGoogle Scholar
  5. 5.
    Foschini G J. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Tech J, 1996, 1: 41–59CrossRefGoogle Scholar
  6. 6.
    Tarokh V, Jafarkhani H, Calderbank A R. Space-time block codes from orthogoal designs. IEEE Trans Inform Theory, 1999, 45: 1456–1467MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Sendonaris A, Erkip E, Aazhang B. User cooperative diversity - Part I: System description, Part II: Implementation aspects and performance analysis. IEEE Trans Commun, 2003, 51: 1927–1948CrossRefGoogle Scholar
  8. 8.
    Laneman J N, Tse D, Wornell G. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Trans Inform Theory, 2004, 50: 3062–3080MathSciNetCrossRefGoogle Scholar
  9. 9.
    Laneman J, N, Wornell W. Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Trans Inform Theory, 2003, 49: 2415–2425MathSciNetCrossRefGoogle Scholar
  10. 10.
    Janani M, Hedayat A, Hunter T E, et al. Coded cooperation in wireless communications: Space-time transmission and iterative decoding. IEEE Trans Signal Process, 2004, 52: 362–371MathSciNetCrossRefGoogle Scholar
  11. 11.
    Stefanov A, Erkip E. Cooperative space-time coding for wireless networks. IEEE Trans Commun, 2005, 53: 1804–1809CrossRefGoogle Scholar
  12. 12.
    Jing Y, Hassibi B. Distributed space-time coding in wireless relay networks. IEEE Trans Wirel Commun, 2006, 5: 3524–3536CrossRefGoogle Scholar
  13. 13.
    Pabst R, Walke B H, Schultz D C, et al. Relay-based deployment concepts for wireless and mobile broadband radio. IEEE Commun Mag, 2004, 42: 80–89CrossRefGoogle Scholar
  14. 14.
    Scaglione A, Goeckel D L, Laneman J N. Cooperative communications in mobile ad hoc networks: Rethinking the link abstraction. IEEE Signal Process Mag, 2006, 23: 18–29CrossRefGoogle Scholar
  15. 15.
    Stankovic V, Host-Madsen A, Xiong Z. Cooperative diversity for wireless ad hoc networks: capacity bounds and code designs. IEEE Signal Process Mag, 2006, 23: 37–49CrossRefGoogle Scholar
  16. 16.
    Wei S. Diversity-multiplexing tradeoff of asynchronous cooperative diversity in wireless networks. IEEE Trans Inform Theory, 2007, 53: 4150–4172MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kuo W Y, Fitz M P. Frequency offset compensation of pilot symbol assisted modulation in frequency flat fading. IEEE Trans Commun, 1997, 45: 1412–1416CrossRefGoogle Scholar
  18. 18.
    Iltis R A, Mirzaei S, Kastner R. Carrier offset and channel estimation for cooperative MIMO sensor networks. In: Proc IEEE Globecom, San Francisco, 2006. 1–5Google Scholar
  19. 19.
    Pham T H, Nallanathan A, Liang Y C. Joint channel and frequency offset estimation in distributed MIMO flat-fading channels. IEEE Trans Wireless Commun, 2008, 7: 648–656CrossRefGoogle Scholar
  20. 20.
    Parker P A, Mitran P, Bliss B W, et al, On bounds and algorithms for frequency synchronization for collaborative communication systems. IEEE Trans Signal Process, 2008, 56: 3742–3752MathSciNetCrossRefGoogle Scholar
  21. 21.
    Li X, Wu Y C, Serpedin E. Timing synchronization in decode-and-forward cooperative communication systems. IEEE Trans Signal Process, 2009, 57: 1444–1455MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wang J Z, Milstein L B. CDMA overlay situations for microcellular mobile communications. IEEE Trans Commun, 1995, COM-43: 603–614CrossRefGoogle Scholar
  23. 23.
    Rankov B, Wittneben A. Achievable rate regions for the two-way relay channel. In: Proc IEEE International Symp Inform Theory (ISIT), 2006. 1668–1672Google Scholar
  24. 24.
    Rankov B, Wittneben A. Spectral efficient protocols for halfduplex fading relay channels. IEEE J Sel Area Commun, 2007, 25: 379–389CrossRefGoogle Scholar
  25. 25.
    Katti S, Gollakota S, Katabi D. Embracing wireless interference: analog network coding. In: Proc ACM SIGCOMM, 2007. 397–408Google Scholar
  26. 26.
    Zhang S, Liew S C, Lam P P. Physical layer network coding. In: Proc MobiCOM, 2006. 358–365Google Scholar
  27. 27.
    Koike-Akino T, Popovski P, Tarokh V. Optimized constellation for two-way wireless relaying with physical network coding. IEEE J Sel Areas Commun, 2009, 27: 773–787CrossRefGoogle Scholar
  28. 28.
    Li Z, Xia X G, Li B. Achieving full diversity and fast ML decoding via simple analog network coding for asynchronous two-way relay networks. IEEE Trans Commun, 2009, 57: 3672–3681MathSciNetCrossRefGoogle Scholar
  29. 29.
    Wang H M, Xia X G, Yin Q. A linear analog network coding for asynchronous two-way relay networks. IEEE Trans Wireless Commun, 2010, 9: 3630–3637CrossRefGoogle Scholar
  30. 30.
    Wei S, Goeckel D, Valenti M. Asynchronous cooperative diversity. IEEE Trans Wireless Commun, 2006, 5: 1547–1557CrossRefGoogle Scholar
  31. 31.
    Li X. Space-time coded multi-transmission among distributed transmitters without perfect synchronization. IEEE Signal Process Lett, 2004, 11: 948–951CrossRefGoogle Scholar
  32. 32.
    Mei Y, Hua Y, Swami A, et al. Combating synchronization errors in cooperative relays. In: Proc IEEE ICASSP, Vol 3, 2005. 369–372Google Scholar
  33. 33.
    Zheng F C, Burr A G, Olafsson S. Near-optimum detection for distributed space-time block coding under imperfect synchronization. IEEE Trans Commun, 2008, 56: 1795–1799CrossRefGoogle Scholar
  34. 34.
    Li Y, Xia X G. A family of distributed space-time trellis codes with asynchronous cooperative diversity. IEEE Trans Commun, 2007, 55: 790–800. Partially presented in Proc the Fourth International Conf Information Processing in Sensor Networks (IPSN), UCLA, Los Angeles: 2005. 25–27CrossRefGoogle Scholar
  35. 35.
    Shang Y, Xia X G. Shift full rank matrices and applications in space-time trellis codes for relay networks with asynchronous cooperative diversity. IEEE Trans Inform Theory, 2006, 52: 3153–3167MathSciNetCrossRefGoogle Scholar
  36. 36.
    Shang Y, Xia X G. Limited-shift-full-rank matrices with applications in asynchronous cooperative communications. IEEE Trans Inform Theory, 2007, 53: 4199–4126MathSciNetCrossRefGoogle Scholar
  37. 37.
    Hammons A R. Algebraic space-time codes for quasi-synchronous cooperative diversity. In: Proceedings IEEE Conference Wireless Networks, Commun Mobile Comput, Maui, HI, 2005. 11–15Google Scholar
  38. 38.
    Damen M O, Hammons A R. Delay-tolerant distributed TAST codes for cooperative diversity. IEEE Trans Inform Theory, 2007, 53: 3755–3773MathSciNetCrossRefGoogle Scholar
  39. 39.
    Shang Y, Xia X G. Space-time trellis codes with asynchronous full diversity up to fractional symbol delays. IEEE Trans Wirel Commun, 2008, 7: 2473–2479CrossRefGoogle Scholar
  40. 40.
    Guo X, Xia X G. Distributed linear convolutive space-time codes for asynchronous cooperative communication networks. IEEE Trans Wirel Commun, 2008, 7: 1857–1861CrossRefGoogle Scholar
  41. 41.
    Zhong Z, Zhu S, Nallanathan A. Delay-tolerant distributed linear convolutional space-time code with minimum memory length under frequency-selective channels. IEEE Trans Wirel Commun, 2009, 8: 3944–3949CrossRefGoogle Scholar
  42. 42.
    Li Z, Xia X G. A simple Alamouti space-time transmission scheme for asynchronous cooperative systems. IEEE Signal Process Lett, 2007, 14: 804–807CrossRefGoogle Scholar
  43. 43.
    Rajan G S, Rajan B S. OFDM based distributed space time coding for asynchronous relay networks. In: Proc IEEE Int Conf Commun (ICC), 2008. 1118–1122Google Scholar
  44. 44.
    Guo X, Xia X G. A distributed space-time coding in asynchronous wireless relay networks. IEEE Trans Wirel Commun, 2008, 7: 1812–1816CrossRefGoogle Scholar
  45. 45.
    Lu H F. Constructions of fully-diverse high-rate space-frequency codes for asynchronous cooperative relay networks. In: Proc IEEE International Symposium of Information Theory (ISIT). Toronto, 2008. 832–836Google Scholar
  46. 46.
    Li Z, Xia X G, Lee M H. A simple orthogonal space-time coding scheme for asynchronous cooperative systems for frequency selective fading channels. IEEE Trans Commun, 2010, 58: 2219–2224. Also downloadable at http://www.ee.udel. edu/~xxia/Pub.html/paper li xia 2010.pdf and http://www.ee.udel.edu/~xxia/Pub.html/correction li xia.pdf CrossRefGoogle Scholar
  47. 47.
    Li Y, Zhang W, Xia X G. Distributive high-rate space-frequency codes achieving full cooperative and multipath diversities for asynchronous cooperative communications. IEEE Trans Veh Technol, 2009, 58: 207–217CrossRefGoogle Scholar
  48. 48.
    Wittneben A. Base station modulation diversity for digital SIMULCAST. In: Proc IEEE VTC’93, 1993. 505–511Google Scholar
  49. 49.
    Lindskog E, Paulraj A. A transmit diversity scheme for channels with intersymbol interference. In: Proc IEEE ICC’00. New Orleans, 2000. 307–311Google Scholar
  50. 50.
    Damen M O, Gamal H E, Beaulieu N C. Systematic construction of full algebraic diversity constellations. IEEE Trans Inform Theory, 2003, 49: 3344–3349MathSciNetCrossRefGoogle Scholar
  51. 51.
    Liu J, Zhang J K, Wong M. Full-diversity codes for MISO systems equipped with linear or ML detectors. IEEE Trans Inform Theory, 2008, 54: 4511–4527MathSciNetCrossRefGoogle Scholar
  52. 52.
    Shang Y, Xia X G. On space-time block codes achieving full diversity with linear receivers. IEEE Trans Inform Theory, 2008, 54: 4528–4547MathSciNetCrossRefGoogle Scholar
  53. 53.
    Wang H, Xia X G, Yin Q, et al. A family of space-time block codes achieving full diversity with linear receivers. IEEE Trans Commun, 2009, 57: 3607–3617CrossRefGoogle Scholar
  54. 54.
    Zhang W, Yuan J. A simple design of space-time block codes achieving full diversity with linear receivers. In: Proc ICASSP. Taipei, 2009. 2729–2732Google Scholar
  55. 55.
    Zhang S B, Xia X G, Wang J Z. Cooperative performance and diversity gain of wireless relay networks (in press). Partially appeared in Proc IEEE VTC2011-Spring, Budapest, 2011. 15–18Google Scholar
  56. 56.
    Gamal H E, Damen M O. Universal space-time coding. IEEE Trans Inform Theory, 2003, 49: 1097–1119MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Zhang W, Xia X G, Ching P C. Full-diversity and fast ML decoding properties of general orthogonal space-time block codes for MIMO-OFDM systems. IEEE Trans Wirel Commun, 2007, 6: 1647–1653CrossRefGoogle Scholar
  58. 58.
    Li Z, Qu D, Zhu G. An equalization technique for distributed STBC-OFDM system with multiple carrier frequency offsets. In: Proc IEEE WCNC, vol 2, 2006. 839–843Google Scholar
  59. 59.
    Veronesi D, Goeckel D L. Multiple frequency offset compensation in cooperative wireless systems. In: Proc IEEE Globecom’06. San Francisco, 2006. 1–5Google Scholar
  60. 60.
    Tian F, Xia X G, Ching P C. Signal detection for space-frequency coded cooperative communication system with multiple carrier frequency offsets. In: Proc IEEE Wireless Communications Networking Conf (WCNC). Hong Kong, 2007. 1221–1225Google Scholar
  61. 61.
    Benvenuto N, Tomasin S, Veronesi D. Multiple frequency offsets estimation and compensation for cooeperative networks. In: Proc IEEE WCNC’07. Hong Kong, 2007. 892–896Google Scholar
  62. 62.
    Tian F, Xia X G, Ching P C, et al. Signal detection in a space-frequency coded cooperative communication system with multiple carrier frequency offsets by exploiting specific properties of the code structure. IEEE Trans Veh Technol, 2009, 58: 3396–3409CrossRefGoogle Scholar
  63. 63.
    Wang H, Xia X G, Yin Q. Computationally efficient equalization for asynchronous cooperative communications with multiple frequency offsets. IEEE Trans Wirel Commun, 2009, 8: 648–655CrossRefGoogle Scholar
  64. 64.
    Wang H M, Yin Q, Xia X G. Fast Kalman equalization for time-frequency asynchronous cooperative relay networks with distributed space-time codes. IEEE Trans Veh Technol, 2010, 59: 4651–4658CrossRefGoogle Scholar
  65. 65.
    Li Z, Xia X G. An Alamouti coded OFDM transmission for cooperative systems robust to both timing errors and frequency offsets. IEEE Trans Wirel Commun, Part II, 2008, 7: 1839–1844Google Scholar
  66. 66.
    Li X, Ng F, Han T. Carrier frequency offset mitigation in asynchronous cooperative OFDM transmissions. IEEE Trans Signal Process, 2008, 56: 675–685MathSciNetCrossRefGoogle Scholar
  67. 67.
    Zhao Y, Haggman S G. Intercarrier interference self-cancellation scheme for OFDM mobile communication systems. IEEE Trans Commun, 2001, 49: 1185–1191MATHCrossRefGoogle Scholar
  68. 68.
    Wang H, Xia X G, Yin Q. Distributed space-frequency codes for cooperative communication systems with multiple carrier frequency offsets. IEEE Trans Wirel Commun, 2009, 8: 1045–1055CrossRefGoogle Scholar
  69. 69.
    Wang H, Yin Q, Xia X G. Full diversity space-frequency codes for frequency asynchronous cooperative relay networks with linear receivers. IEEE Trans Commun, 2011, 59: 236–247CrossRefGoogle Scholar
  70. 70.
    Tian F, Xia X G, Ma K, et al. On the full diversity property of a space-frequency code family with multiple frequency offsets in cooperative communication systems. J Commun, 2010, 5: 317–331Google Scholar
  71. 71.
    Zhong Z, Zhu S, Lü G. Distributed space-time code for asynchronous two-way wireless relay networks under frequency-selective channels. In: Proc IEEE International Conf Commun (ICC). Dresten, 2009. 1–5Google Scholar
  72. 72.
    Zhang S, Liew S C, Lam P P. On the synchronization of physical-layer network coding. In: Proc IEEE Inform Theory Workshop (ITW), 2006. 404–408Google Scholar
  73. 73.
    Wang D, Fu S, Lu K. Channel coding design to support asychronous phasical layer network coding. In: Proc IEEE Globecom’09. Honolulu, HI, 2009. 1–6Google Scholar
  74. 74.
    Sirkeci-Mergen B, Scaglione A. Randomized space-time coding for distributed cooperative communication. IEEE Trans Signal Process, 2007, 55: 5003–5017MathSciNetCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.State Key Laboratory of Integrated Services NetworksXidian UniversityXi’anChina
  3. 3.Department of Electrical and Computer EngineeringUniversity of DelawareNewarkUSA

Personalised recommendations