Dynamic visual servoing of a small scale autonomous helicopter in uncalibrated environments

  • CaiZhi Fan
  • YunHui Liu
  • BaoQuan Song
  • DongXiang Zhou
Research Papers

Abstract

This paper presents a novel adaptive controller for image-based visual servoing of a small autonomous helicopter to cope with uncalibrated camera parameters and unknown 3D geometry of the feature points. The controller is based on the back-stepping technique, but its design has two new features. First, it incorporates the visual feedback into the last step of the backstepping procedure, while existing backsteppingbased methods employ the visual feedback at the early steps. Second, the controller maps the image errors onto the actuator space via a depth-independent interaction matrix to avoid estimation the depths of the feature points. The new design method makes it possible to linearly parameterize the closed-loop dynamics by the unknown camera parameters and coordinates of the feature points in the 3D space so that an adaptive algorithm can be developed to estimate the unknown parameters and coordinates on-line. Two potential functions are introduced in the controller to guarantee convergence of the image errors and to avoid trivial solutions of the estimated parameters. The Lyapunov method is used to prove the asymptotic stability of the proposed controller based on the nonlinear dynamics of the helicopter. Simulations have been also conducted to demonstrate the performance of the proposed method.

Keywords

backstepping uncalibrated camera adaptive visual servoing autonomous helicopter 

References

  1. 1.
    Saripalli S, Montgomery J F, Sukhatme G S. Visually guided landing of an unmanned aerial vehicle. IEEE Trans Robotic Autom, 2003, 19: 371–381CrossRefGoogle Scholar
  2. 2.
    Mejias L, Campoy P, Saripalli S, et al. A visual servoing approach for tracking features in urban areas using an autonomous helicopter. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Orlando: IEEE Press, 2006. 2503–2508CrossRefGoogle Scholar
  3. 3.
    Shakerina O, Vidal R, Sharp C S, et al. Multiple-view motion estimation and control for landing and unmanned aerial vehicle. In: Proceedings of IEEE International Conference on Robotics and Automation. Washington D C: IEEE Press, 2002. 2793–2798Google Scholar
  4. 4.
    Guenard N, Hamel T, Mahony R. A practical visual servo control for a unmanned aerial vehicle. In: IEEE International Conference on Robotics and Automation. Roma: IEEE Press, 2007. 1342–1348Google Scholar
  5. 5.
    Fakhry H H, Wilson W J. Modified resolved acceleration controller for position-Based visual servoing. Math Comp Model, 1996, 24: 1–9MATHCrossRefGoogle Scholar
  6. 6.
    Wilson W J, Hulls C C W, Bell G S. Relative end-effector control using Cartesian position based visual servoing. IEEE Trans Robotic Autom, 1996, 12: 684–696CrossRefGoogle Scholar
  7. 7.
    Espiau B, Chaumette F, Rives P. A new approach to visual servoing in Robotics. IEEE Trans Robotic Autom, 1992, 8: 313–326CrossRefGoogle Scholar
  8. 8.
    Grosso E, Metta G, Oddera A, et al. Robust visual servoing in 3D reaching tasks. IEEE Trans Robotic Autom, 1996, 12: 732–742CrossRefGoogle Scholar
  9. 9.
    Wang H S, Liu Y H, Zhou D X. Dynamic visual tracking for manipulators using an uncalibrated fixed camera. IEEE Trans Robotic, 2007, 23: 610–617CrossRefGoogle Scholar
  10. 10.
    Liu Y H, Wang H S, Lam K. Dynamic visual servoing of robots in uncalibrated environments. In: Proceedings of IEEE International Conference on Robotics and Automation. Barcelona: IEEE Press, 2005. 3142–3148Google Scholar
  11. 11.
    Hosada K, Asada M. Versatile visual servoing without knowledge of true Jacobain In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Munich: IEEE Press, 1994. 186–191Google Scholar
  12. 12.
    Malis E. Visual servoing invariant to changes in camera intrinsic parameters. IEEE Trans Robotic Autom, 2004, 20: 72–81CrossRefGoogle Scholar
  13. 13.
    Papanikolopoulos N P, Khosla P K. Adaptive robotic visual tracking: theory and experiments. IEEE Trans Automat Contr, 1993, 38: 429–445MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Papanikolopoulos N P, Nelson B J, Khosla P K. Six degree-of-freedom hand/eye visual tracking with uncertain parameters. IEEE Trans Robotic Autom, 1995, 11: 725–732CrossRefGoogle Scholar
  15. 15.
    Piepmeier J A, McMurray G V, Lipkin H. Uncalibrated dynamic visual servoing. IEEE Trans Robotic Autom, 2004, 20: 143–147CrossRefGoogle Scholar
  16. 16.
    Ruf A, Tonko M, Horaud R, et al. Visual tracking of an end-effector by adaptive kinematic prediction. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Grenoble: IEEE Press, 1997. 893–898Google Scholar
  17. 17.
    Shakernia O, Ma Y, Koo T J, et al. Landing an unmanned air vehicle: vision-based motion estimation and nonlinear control. Asian J Contr, 1999, 1: 128–146CrossRefGoogle Scholar
  18. 18.
    Zhang H, Ostrowski J P. Visual servoing with dynamics: control of an unmanned blimp. In: Proceedings IEEE International Conference on Robotics and Automation. Detroit: IEEE Press, 1999. 618–623Google Scholar
  19. 19.
    Hamel T, Mahony R. Visual servoing of a class of under-actuated dynamic rigid-body systems. In: Proceedings of the 39th Conference on Decision and Control. Sydney: IEEE Press, 2000. 3933–3938Google Scholar
  20. 20.
    Chriette A, Hamel T, Mahony R. Visual servoing for a scale model autonomous helicopter. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation. Seoul: IEEE Press, 2001. 1701–1706Google Scholar
  21. 21.
    Mahony R, Hamel T, Dzul A. Hover control via Lyapunov control for an autonomous model helicopter. In: Proceedings of the 38th Conference on Decision & Control. Phoenix: IEEE Press, 1999. 3490–3495Google Scholar
  22. 22.
    Koo J T, Sastry S. Output tracking control design of a helicopter model based on approximate linearization. In: Proceedings of the 37th Conference on Decision and Control. Tampa: IEEE Press, 1998. 3636–3640Google Scholar
  23. 23.
    Hauser J, Sastry S, Meyer G. Nonlinear control design for slightly nonminimum phase system: application to V/STOL aircraft. Automatica, 1992, 28: 665–679MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Mahony R, Hamel T. Robust trajectory tracking for a scale model autonomous helicopter. Int J Robust Nonlin, 2004, 14: 1035–1059MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Forsyth D A, Ponce J. Computer Vision: a Modern Approach. NJ: Prentice-Hall Press, 2003. 110–160Google Scholar
  26. 26.
    Slotine J J, Li W P. On the adaptive control of robot manipulators. Int J Robot Res, 1987, 6: 49–59CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • CaiZhi Fan
    • 1
  • YunHui Liu
    • 1
    • 2
  • BaoQuan Song
    • 1
  • DongXiang Zhou
    • 1
  1. 1.Joint Center of Intelligent Sensing SystemNational University of Defense TechnologyChangshaChina
  2. 2.Department of Mechanical and Automation EngineeringChinese University of Hong KongHong KongChina

Personalised recommendations