Advertisement

Science China Information Sciences

, Volume 53, Issue 11, pp 2310–2322 | Cite as

Physical modeling and spectrum spread analysis of surface clutter in forward scattering radar

  • Teng Long
  • Cheng Hu
  • Tao Zeng
  • XiaoLiang Li
Research Papers

Abstract

In this paper, based on the processing results of measured clutter data in forward scattering radar, a special phenomenon that the clutter spectrum spread is insensitive to the wind speed and carrier frequency is observed. The pendulum model is first time introduced into the physical modeling and formation mechanism analysis of surface clutter, and the quantitative expression of clutter spectrum spread is analytically obtained. Under the assumption of pendulum model, the processing results of measured clutter data agree well with the results of theoretical analysis, which fully verifies the correctness of pendulum model and reveals the formation mechanism of surface clutter spectrum in forward scattering radar. Furthermore, according to the stability of clutter spectrum spread with respect to carrier frequencies and wind speed, the optimal cutoff frequencies of clutter filter can be obtained, which establishes the basis for moving target detection and accurate parameters estimation.

Keywords

forward scattering radar clutter spectrum pendulum model formation mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Skolnik M I. RADAR Handbook. 2nd ed. New York: McGaw-Hill, 1990Google Scholar
  2. 2.
    Willis N J. Bistatic Radar. Boston, MA: Artech House Inc., 1991Google Scholar
  3. 3.
    Chernyak V S. Fundamentals of Multisite Radar Systems: Multistatic Radars and Multiradar Systems. 2nd ed. NV: Gordon and Breach Science Publishers, 1998Google Scholar
  4. 4.
    Cherniakov M. Bistatic Radar: Principles and Practice. Chichester: John Wiley & Sons Ltd., 2007Google Scholar
  5. 5.
    Chen B H. The Reflectivity of Radar Target (in Chinese). Beijing: National Defense Industry Press, 1993Google Scholar
  6. 6.
    Billingsley J B, Farina A, Gini F, et al. Impact of experimentally measured Doppler spectrum of ground clutter cancellation on MTI and STAP. In: Proceedings of 1997 International Radar Conference. Edinburgh: IEEE Aerospace and Electronic Systems Society, 1997. 290–294Google Scholar
  7. 7.
    Chan H C. Radar sea-clutter at low grazing angles. IEE Proc, 1990, 137: 102–112Google Scholar
  8. 8.
    Chen K S, Fung A K. Frequency dependence of backscattered signals from forest components. IEE Proc, 1995, 142: 310–315Google Scholar
  9. 9.
    Jao J K. Amplitude distribution of composite terrain radar clutter and the K-distribution. IEEE Trans Anten Propag, 1984, 32: 1049–1062CrossRefGoogle Scholar
  10. 10.
    Sangston K J, Gini F, Greco M V, et al. Optimum and sub-optimum coherent radar detection in compound-Gaussian clutter. IEEE Trans Aerospace Electr Syst, 1999, 35: 445–457CrossRefGoogle Scholar
  11. 11.
    Farina A, Gini F, Greco M V, et al. Improvement factor for real sea-clutter Doppler frequency spectra. IEE Proc Radar Sonar Navig, 1996, 143: 341–344CrossRefGoogle Scholar
  12. 12.
    Lombardo P, Billingsley J B. A new model for the Doppler spectrum of windblown radar ground clutter. In: The Record of the 1999 IEEE Radar Conference. MA: IEEE Aerospace and Electronic Systems Society, 1999. 142–147Google Scholar
  13. 13.
    Billingsley J B, Farina A, Gini F, et al. Statistical analyses of measured radar ground clutter data. IEEE Trans Aerospace Electr Syst, 1999, 35: 579–593CrossRefGoogle Scholar
  14. 14.
    Greco M, Gini F, Farina A, et al. Validation of windblown radar ground clutter spectral shape. IEEE Trans Aerospace Electr Syst, 2001, 37: 538–548CrossRefGoogle Scholar
  15. 15.
    Hu C, Long T, Zeng T. The possibility of isolated target 3-D position estimation and optimal receiver position determination in SS-BSAR. Sci China Ser F-Inf Sci, 2008, 51: 1372–1383CrossRefGoogle Scholar
  16. 16.
    Blyakhman A B, Runova I A. Forward scattering radiolocation bistatic RCS and target detection. In: The Record of the IEEE 1999 International Radar Conference. MA: IEEE Aerospace and Electronic Systems Society, 1999. 203–208Google Scholar
  17. 17.
    Chapurskiy V V, Sablin V N. SISAR: shadow inverse synthetic aperture radiolocation. In: The Record of the IEEE 2000 International Radar Conference. VA: Institute of Electronical and Elctronics Engineers, 2000. 322–328CrossRefGoogle Scholar
  18. 18.
    Long T, Hu C, Cherniakov M. Ground moving target signal model and power calculation in forward scattering micro radar. Sci China Ser F-Inf Sci, 2009, 52: 1704–1714MATHCrossRefGoogle Scholar
  19. 19.
    Adbullah R S A. Forward scattering radar for vehicle classification. PHD thesis. Birmingham: School of Electronic, Electrical and Computer Engineering of the University of Birmingham, 2005Google Scholar
  20. 20.
    Cherniakov M, Abdullah R S A R, Jancovic P, et al. Forward scattering micro sensor for vehicle classification. In: 2005 IEEE International Radar Conference record. VA: Institute of Electronical and Electronics Engineers, 2005. 184–189CrossRefGoogle Scholar
  21. 21.
    Cherniakov M, Salous M, Abdullah R, et al. Forward scattering radar for ground targets detection and recognition. In: 2nd EMRS DTC Technical Conference. Edinburgh, 2005. A14–A19Google Scholar
  22. 22.
    Cherniakov M, Abdullah R S A R, Jancovic P, et al. Automatic ground target classification using forward scattering radar. IEE Proc Radar Sonar Navig, 2006, 153: 427–437CrossRefGoogle Scholar
  23. 23.
    Overrein O, Navarro J, Shajpal V, et al. ISAR processing results from forward scatter radar measurements of ships. In: 2006 IEEE Conference on Radar. Shanghai, China, 2006. 560–564Google Scholar
  24. 24.
    Hu C, Antoniou M, Cherniakov M. Quasi-optimal signal processing in ground forward scattering radar. In: 2008 IEEE Radar Conference. Rome: Curran Associates Inc., 2008. 1–6Google Scholar
  25. 25.
    Sizov V, Hu C, Antoniou M, et al. Vegetation clutter SPECTRAL properties in vhf/uhf bistatic Doppler radar. In: 2008 IEEE Radar Conference. Rome: Curran Associates Inc., 2008. 1–6CrossRefGoogle Scholar
  26. 26.
    Zeng H B, Hu C, Li T. The signal to noise ratio analysis of ground forward scattering radar. In: IET International Radar Conference 2009. Guilin: Institution of Engineering & Technology, 2009. 1–4Google Scholar
  27. 27.
    Hu C, Long T, Cherniakov M. Forward scattering micro radars for situation awareness. In: APSAR Conference. Xi’an, China, 2009. 1–4Google Scholar
  28. 28.
    Sizov V, Cherniakov M, Antoniou M. Forward scattering radar power budget analysis for ground targets. IET Radar Sonar Navig, 2007, 1: 437–446CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Radar Research Laboratory, Department of Electronic EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations