Advertisement

Science China Information Sciences

, Volume 53, Issue 7, pp 1312–1321 | Cite as

An improved method for progressive animation models generation

  • ShiXue Zhang
  • JinYu Zhao
  • EnHua Wu
Research Papers Special Focus

Abstract

In computer graphics, animated models are widely used to represent time-varying data. And the progressive representation of such models can accelerate the speed of processing, transmission and storage. In this paper, we propose an efficient method to generate progressive animation models. Our method uses an improved curvature sensitive quadric error metric (QEM) criterion as basic measurement, which can preserve more local features on the surface. We append a deformation weight to the aggregated edge contraction cost during the whole animation to preserve more motion features. At last, we introduce a mesh optimization method for the animation sequence, which can efficiently improve the temporal coherence and reduce visual artifacts between adjacent frames. The results show our approach is efficient, easy to implement, and good quality progressive animation models can be generated at any level of detail.

Keywords

animation models LOD progressive mesh mesh optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohen J, Varshney A, Manocha D, et al. Simplification envelopes. In: ACM SIGGRAPH 1996 Conference Proceedings, New Orleans, LA, 1996. 119–128Google Scholar
  2. 2.
    Schroeder W J, Zarge J A, Lorensen W E. Decimation of triangle meshes. In: ACM SIGGRAPH 1992 Conference Proceedings, Chicago, 1992. 65–70Google Scholar
  3. 3.
    Low K L, Tan T S. Model simplification using Vertex-Clustering. In: ACM Symposium on Interactive 3D Graphics, New York, 1997. 75–82Google Scholar
  4. 4.
    Garland M, Willmott A, Heckbert P S. Hierarchical face clustering on polygonal surfaces. In: Proc ACM Symp Interactive 3D Graphics, New York, 2001. 49–58Google Scholar
  5. 5.
    Lee A, Moreton H, Hoppe H. Displaced subdivision surfaces. In: ACM SIGGRAPH 2000 Conference Proceedings, New York, 2000. 85–94Google Scholar
  6. 6.
    Garland M, Heckbert P S. Surface simplification using quadric error metrics. ACM SIGGRAPH 1997 Conference Proceedings, New York, 1997. 209–216Google Scholar
  7. 7.
    Guéziec A. Locally toleranced surface simplification. IEEE Trans Visual Comput Graph, 1999, 5: 168–189CrossRefGoogle Scholar
  8. 8.
    Hoppe H. Progressive meshes. In: ACM SIGGRAPH 1996 Conference Proceedings, New Orleans, 1996. 99–108Google Scholar
  9. 9.
    Lee C H, Varshney A, David J. Mesh saliency. In: Proceedings of ACM SIGGRAPH, Los Angeles, 2005. 659–666Google Scholar
  10. 10.
    Yan J, Shi P, Zhang D. Mesh simplification with hierarchical shape analysis and iterative edge contraction. IEEE Trans Visual Comput Graph, 2004, 10: 142–151CrossRefGoogle Scholar
  11. 11.
    Garland M. Multiresolution modeling: survey & future opportunities. In: Proceedings of Eurographic, Milano. 1999. 49–65Google Scholar
  12. 12.
    Luebke D, Reddy M, Cohen J. Level of Detail for 3-D Graphics. San Frausisco, CA: Morgan Kaufmann, 2002Google Scholar
  13. 13.
    Oliver M van K, Hélio P. A comparative evaluation of metrics for fast mesh simplification. Comput Graph Forum, 2006, 25: 197–210CrossRefGoogle Scholar
  14. 14.
    Xia J C, Varshney A. Dynamic view-dependent simplification for polygonal models. In: IEEE Visualization 1996 Conference Proceedings, Los Alamitos, CA, 1996. 327–334Google Scholar
  15. 15.
    Hoppe H, DeRose T, Dunchamp T, et al. Mesh optimization. In: ACM SIGGRAPH 1993 Conference Proceedings, Anaheim, CA, 1993. 19–25Google Scholar
  16. 16.
    Garimella R, Shashkov M. Polygonal surface mesh optimization. Eng Comput, 2004, 20: 265–272CrossRefGoogle Scholar
  17. 17.
    de Goes F, Bergo F P G, Falcao A X, et al. Adapted dynamic meshes for deformable surfaces. In: Brazilian Symposium on Computer Graphics and Image Processing, Manaus, Amazona, Brazil, 2006. 213–220Google Scholar
  18. 18.
    Liu L, Tai C, Ji Z, et al. Non-iterative approach for global mesh optimization. Comput Aided Design, 2007, 39: 772–782CrossRefGoogle Scholar
  19. 19.
    Shamir A, Bajaj C, Pascucci V. Multiresolution dynamic meshes with arbitrary deformations. In: IEEE Visualization 2000 Conference Proceedings, Salt Lake City, Utah, 2000. 423–430Google Scholar
  20. 20.
    Shamir A, Pascucci V. Temporal and spatial level of details for dynamic meshes. In: Proceedings of ACM Symposium on Virtual Reality Software and Technology, Banff, Alberta, Canada, 2001. 77–84Google Scholar
  21. 21.
    Mohr A, Gleicher M. Deformation sensitive decimation. Technical Report, University of Wisconsin, 2003Google Scholar
  22. 22.
    Chen B Y, Cho S Y, Johan H, et al. Progressive 3D animated models for mobile & web uses. The J Society Art Sci, 2005, 4: 145–150CrossRefGoogle Scholar
  23. 23.
    Kircher S, Garland M. Progressive multiresolution meshes for deforming surfaces. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, New York, 2005. 191–200Google Scholar
  24. 24.
    Payan F, Hahmann S, Bonneau G P. Deforming surface simplification based on dynamic geometry sampling. In: Proceedings of IEEE International Conference on Shape Modeling and Applications, Lyon, France, 2007. 71–80Google Scholar
  25. 25.
    Tseng J L. Progressive compression and surface analysis for 3D animation objects using temporal discrete shape operator. In: International Conference on Information, Communications & Signal Processing, Singapore, 2007. 1–5Google Scholar
  26. 26.
    Huang F C, Chen B Y, Chuang Y Y. Progressive deforming meshes based on deformation oriented decimation and dynamic connectivity updating. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Vienna, Austria, 2006. 53–62Google Scholar
  27. 27.
    Zhang S, Wu E. A shape feature based simplification method for deforming meshes. Geomet Model Process, 2008, 4975: 548–555CrossRefGoogle Scholar
  28. 28.
    Landreneau E, Schaefer S. Simplification of articulated meshes. In: Proceedings of EUROGRAPHICS, Munich, Germany, 2009Google Scholar
  29. 29.
    Merry B, Marais P, Gain J. Analytic simplification of animated characters. In: International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa (Afrigraph 2009), Pretoria, South Africa, 2009. 37–45Google Scholar
  30. 30.
    Floater M S. Mean value coordinates. Comput Aid Geometr Design, 2003, 20: 19–27zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Sumner R W, Popovic J. Deformation transfer for triangle meshes. In: ACM SIGGRAPH 2004 Conference Proceedings, Los Angeles, 2004. 399–405Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchunChina
  2. 2.Department of Computer and Information ScienceUniversity of MacauMacaoChina
  3. 3.State Key Laboratory of Computer Science, Institute of SoftwareChinese Academy of SciencesBeijingChina

Personalised recommendations