Science China Information Sciences

, Volume 53, Issue 7, pp 1287–1295 | Cite as

Cubic surface fitting to image by combination

  • XueMei Li
  • CaiMing Zhang
  • YiZhen Yue
  • KunPeng Wang
Research Papers Special Focus

Abstract

We present a new method for constructing a fitting surface to image data. The new method is based on a supposition that the given image data are sampled from an original scene that can be represented by a surface defined by piecewise quadratic polynomials. The surface representing the original scene is known as the original surface in this paper. Unlike existing methods, which generally construct the fitting surface to the original surface using image data as interpolation data, the new method constructs the fitting surface using the image data as constraints to reverse the sampling process, which improves the approximation precision of the fitting surface. Associated with each data point and its near region, the new method constructs a quadratic polynomial patch locally using the sampling formula as constraint. The quadratic patch approximates the original surface with a quadratic polynomial precision. The fitting surface which approximates the original surface is formed by the combination of all the quadratic polynomial patches. The experiments demonstrate that compared with Bi-cubic and Separable PCC methods, the new method produced resized images with high precision and good quality.

Keywords

surface fitting quadratic polynomial image resizing reversing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gonzalez R C, Gonzalez R C, Woods R E. Digital Image Processing. Reading, MA: Addision-Wesley, 1992Google Scholar
  2. 2.
    Maeland E. On the comparison of interpolation methods. IEEE Trans Med Imag, 1988, 7: 213–217CrossRefGoogle Scholar
  3. 3.
    Parker J A, Kenyon R V, Troxel D E. Comparison of interpolating methods for image resampling. IEEE Trans Med Imag, 1983, MI-2: 31–39CrossRefGoogle Scholar
  4. 4.
    Keys R G. Cubic convolution interpolation for digital image processing. IEEE Trans Acoust Speech Signal Proc, 1981, 29: 1153–1160MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Hsieh H, Andrews H C. Cubic splines for image interpolation and digital filtering. IEEE Trans Acoust Speech Signal Proc, 1981, 26: 508–517CrossRefGoogle Scholar
  6. 6.
    Park S K, Schowengerdt R A. Image reconstruction by parametric cubic convolution. Comput Vision Graph Image Proc, 1983, 23: 258–272CrossRefGoogle Scholar
  7. 7.
    Meijering E H W, Niessen W J, Viergever M A. Piecewise polynomial kernels for image interpolation: A generalization of cubic convolution. In: Proc IEEE Int Conf Image Processing, Kobe, Japan, 1999. 647–651Google Scholar
  8. 8.
    Unser M, Aldroubi A, Eden M. Fast B-spline transforms for continuous image representation and interpolation. IEEE Trans Patt Anal Mach Intell, 1991, 13: 277–285CrossRefGoogle Scholar
  9. 9.
    Munoz A, Blu T, Unser M. Least-squares image resizing using finite differences. IEEE Trans Image Proc, 2001, 10: 1365–1378MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Pumar M A. Zooming of terrain imagery using fractal-based interpolation. Comput Graphic, 1996, 20: 171–176CrossRefGoogle Scholar
  11. 11.
    Unser M, Aldroubi A, Eden M. Enlargement or reduction of digital images with minimum loss of information. IEEE Trans Image Proc, 1995, 4: 247–258CrossRefGoogle Scholar
  12. 12.
    Lehmann T M, Gonner C, Spitzer K. Survey: interpolation methods in medical processing. IEEE Trans Med Imag, 1999, 18: 1049–1075CrossRefGoogle Scholar
  13. 13.
    Battiato S, Gallo G, Stanco F. A locally adaptive zooming algorithm for digital images. Image Vision Comput, 2002, 20: 805–812CrossRefGoogle Scholar
  14. 14.
    Chang C C, Chou Y C, Yu Y H, et al. An image zooming technique based on vector quantization approximation. Image Vision Comput, 2005, 23: 1214–1225CrossRefGoogle Scholar
  15. 15.
    Reichenbach S E, Geng F. Two-dimensional cubic reichenbach convolution. IEEE Trans Image Proc, 2003, 12: 857–865CrossRefMathSciNetGoogle Scholar
  16. 16.
    Shi J, Reichenbach S E. Image interpolation by two-dimensional parametric cubic convolution. IEEE Trans Image Proc, 2006, 15: 1857–1870CrossRefGoogle Scholar
  17. 17.
    Li X, Orchard M T. New edge-directed interpolation. IEEE Trans Image Proc, 2001, 10: 1521–1527CrossRefGoogle Scholar
  18. 18.
    Zhang X, Wu X. Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation. IEEE Trans Image Proc, 2008, 17: 887–896CrossRefGoogle Scholar
  19. 19.
    Avidan S, Shamir A. Seam carving for content-aware image resizing. ACM Trans Graph (SIGGRAPH), 2007, 26: 10–18CrossRefGoogle Scholar
  20. 20.
    Rubinstein M, Shamir A, Avidan S. Improved seam carving for video retargeting. ACM Trans Graph (SIGGRAPH), 2008, 27: 1–9CrossRefGoogle Scholar
  21. 21.
    Zhang Y F, Hu S M, Martin R R. Shrinkability maps for content-aware video resizing. Comput Graph Forum, 2008, 27: 1797–1804CrossRefGoogle Scholar
  22. 22.
    Huang H, Fu T N, Rosin P L, et al. Real-time content-aware image resizing. Sci China Ser F-Inf Sci, 2009, 52: 172–182MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Linfoot E H. Transmission factors and optical design. J Optic Society America, 1956, 46: 740–752CrossRefMathSciNetGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • XueMei Li
    • 1
  • CaiMing Zhang
    • 1
    • 2
  • YiZhen Yue
    • 1
  • KunPeng Wang
    • 1
  1. 1.School of Computer Science and TechnologyShandong UniversityJinanChina
  2. 2.School of Computer Science and TechnologyShandong Economics UniversityJinanChina

Personalised recommendations