Science China Information Sciences

, Volume 53, Issue 7, pp 1417–1430 | Cite as

Capacity bounds of transmit beamforming over MISO time-varying channels with imperfect feedback

Research Papers

Abstract

In wireless multiple input single output (MISO) systems, transmit beamforming using feedback of quantized channel state information (CSI) can provide both diversity gain and array gain with simple implementation. Most of previous researches include several ideal assumptions, such as block-fading channels, perfect CSI at the receiver, or error-free and zero-delay feedback link. This paper investigates a more realistic Jakes’ time-varying MISO Rayleigh fading channel with CSI estimation error and feedback delay, derives the upper and lower bounds on the ergodic capacity, and obtains the optimal frame length according to the capacity lower bound given the normalized feedback bits. The numerical and simulation results show that the derived upper and lower bounds on the capacity is quite close, increasing channel estimation error or Doppler spread will reduce the capacity bounds, and the optimal frame length can maximize the capacity lower bound.

Keywords

beamforming capacity bounds channel estimation error feedback delay time-varying cha 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen J B. Antenna arrays in mobile communications: gain, diversity, and channel capacity. IEEE Antennas Propag Mag, 2000, 42: 12–16CrossRefGoogle Scholar
  2. 2.
    Narula A, Lopez M J, Trott M D, et al. Efficient use of side information in multiple antenna data transmission over fading channels. IEEE J Select Areas Commun, 1998, 16: 1423–1436CrossRefGoogle Scholar
  3. 3.
    Love D J, Heath Jr R W. Grassmannian beamforming for multiple-input multiple-output wireless systems. IEEE Trans Inf Theory, 2003, 49: 2735–2745CrossRefMathSciNetGoogle Scholar
  4. 4.
    Mukkavilli K K, Sabharwal A, Erkip E, et al. On beamforming with finite rate feedback in multiple antenna systems. IEEE Trans Inf Theory, 2003, 49: 2562–2579CrossRefMathSciNetGoogle Scholar
  5. 5.
    Roh J C, Rao B D. Transmit beamforming in multiple-antenna systems with finite rate feedback: A VQ-based approach. IEEE Trans Inf Theory, 2006, 52: 1101–1112CrossRefMathSciNetGoogle Scholar
  6. 6.
    Isukapalli Y, Rao B D. Finite rate feedback for spatially and temporally correlated MISO channels in the presentce of estimation errors and feedback delay. In: Proceedings of IEEE GLOBECOM, Washington DC, 2007. 2791–2795Google Scholar
  7. 7.
    Visotsky E, Madhow U. Space-time transmit precoding with imperfect feedback. IEEE Trans Inf Theory, 2001, 47: 2632–2639CrossRefMathSciNetGoogle Scholar
  8. 8.
    Zhou S, Giannakis G B. Optimal transmitter eigen-beamforming and space-time block coding based on channel mean feedback. IEEE Trans Inf Theory, 2003, 50: 2599–2613Google Scholar
  9. 9.
    Simon S H, Moustakas A L. Optimizing MIMO antenna systems with channel covariance feedback. IEEE J Select Areas Commun, 2003, 21: 406–417CrossRefGoogle Scholar
  10. 10.
    Au-Yeung C K, Love D J. On the performance of random vector quantization limited feedback beamforming in a MISO system. IEEE Trans Wirel Commun, 2007, 6: 458–462CrossRefGoogle Scholar
  11. 11.
    Santipach W, Honig M L. Capacity of beamforming with limited training and feedback. In: Proceedings of IEEE Int Symp on Inform Theory (ISIT), Washington DC, 2006. 376–380Google Scholar
  12. 12.
    Ma Y, Zhang D. Error rate of transmit beamforming with delayed and limited feedback. In: Proceedings of IEEE GLOBECOM, 2007. 4071–4075Google Scholar
  13. 13.
    Jakes W. Microwave Mobile Communications. Washington DC: IEEE Press, 1994CrossRefGoogle Scholar
  14. 14.
    Santipach W, Honig M L. Signature optimization for CDMA with limited feedback. IEEE Trans Inf Theory, 2005, 51: 3475–3492CrossRefMathSciNetGoogle Scholar
  15. 15.
    Jindal N. MIMO broadcast channels with finite-rate feedback. IEEE Trans Inf Theory, 2006, 52: 5045–5060CrossRefMathSciNetGoogle Scholar
  16. 16.
    Médard M. The effect upon channel capacity in wireless communication of perfect and imperfect knowledge of the channel. IEEE Trans Inf Theory, 2000, 46: 933–946MATHCrossRefGoogle Scholar
  17. 17.
    Yoo T, Goldsmith A. Capacity and power allocation for fading MIMO channels with channel estimation error. IEEE Trans Inf Theory, 2006, 52: 2203–2214CrossRefMathSciNetGoogle Scholar
  18. 18.
    Huang K, Heath Jr R W, Andrews J G. Limited feedback beamforming over temporally-correlated channels. IEEE Signal Process, 2009, 5: 1959–1975Google Scholar
  19. 19.
    Ma Y, Leith A, Schober R. Predictive feedback for transmit beamforming with delayed feedback and channel estimation errors. In: Proceedings of IEEE Intl Conf on Commun (ICC), Beijing, 2008. 4678–4682Google Scholar
  20. 20.
    3GPP: Physical Layer Aspects for Evolved Universal Terrestrial Radio Access (release 7),. TR 25.814, 2006Google Scholar
  21. 21.
    Hassibi B, Hochwald B M. How much training is needed in a multiple-antenna wireless link? IEEE Trans Inf Theory, 2003, 49: 951–964MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Alamouti S M. A simple transmit diversity technique for wireless communication. IEEE J Select Area Commun, 1998, 16: 1451–1458CrossRefGoogle Scholar
  23. 23.
    Tarokh V, Jafarkhani H, Calderbank A R. Space-time block codes from orthogonal designs. IEEE Trans Inf Theory, 1999, 45: 1456–1467MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Zhong E, Huang T. Numerical Analysis (in Chinese). Beijing: High Education Press, 2004Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.National Key Lab on CommunicationUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Alcatel-Lucent Shanghai Bell Co. LtdShanghaiChina

Personalised recommendations