Science China Information Sciences

, Volume 53, Issue 7, pp 1431–1438 | Cite as

Precoding scheme maximizing SINR for MIMO broadcast channels

Research Papers

Abstract

An improved precoding scheme for multiple-input multiple-output (MIMO) broadcast channel (BC) is proposed to maximize the detection signal-to-interference-plus-noise ratio (SINR) at user side based on the vector-perturbation technique. With the derived maximum detection SINR criterion, a new tree search based detection algorithm, called iterative M-algorithm (IMA), is utilized to find out the optimal perturbation vector. Simulations show that the proposed scheme outperforms the existing schemes which are based on the maximum detection signal-to-noise ratio (SNR) criterion. Moreover, the proposed scheme can achieve the same bit error rate (BER) performance as the vector-perturbation scheme based on sphere encoder and the maximum detection SINR criterion, with guaranteed polynomial worst-case complexity.

Keywords

multiple-input multiple-output (MIMO) system broadcast channel precoding M-algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caire G, Shamai S. On the achievable throughout of a multi-antenna Gaussian broadcast channel. IEEE Trans Inf Theory, 2003, 49: 1691–1706CrossRefMathSciNetGoogle Scholar
  2. 2.
    Vishwanath S, Jindal N, Goldsmith A. Duality, achievable rate, and sum-rate capacity of Guassian MIMO broadcast channels. IEEE Trans Inf Theory, 2003, 49: 2658–2668CrossRefMathSciNetGoogle Scholar
  3. 3.
    Viswanath P, Tse D N C. Sum capacity of the vetor Gaussian broadcast channel and uplink-downlink duality. IEEE Trans Inf Theory, 2003, 49: 1912–1921CrossRefMathSciNetGoogle Scholar
  4. 4.
    Yu W, Cioffi J M. Sum capacity of Guassian vector broadcast channels. IEEE Trans Inf Theory, 2004, 50: 1875–1892CrossRefMathSciNetGoogle Scholar
  5. 5.
    Weingarten H, Steinberg Y, Shamai S. The capacity region of the Gaussian multiple-input multiple-output broadcast channels. IEEE Trans Inf Theory, 2006, 52: 3936–3964CrossRefMathSciNetGoogle Scholar
  6. 6.
    Costa M. Writing on dirty paper. IEEE Trans Inf Theory, 1983, 29: 439–441MATHCrossRefGoogle Scholar
  7. 7.
    Erez U, Shamai S, Zamir R. Capacity and lattice strategies for canceling known interferences. IEEE Trans Inf Theory, 2005, 51: 3820–3833CrossRefMathSciNetGoogle Scholar
  8. 8.
    Erez U, Ten Brink S. A close-to-capacity dirty paper coding scheme. IEEE Trans Inf Theory, 2005, 51: 3417–3432CrossRefGoogle Scholar
  9. 9.
    Yu W, Varodayan D P, Cioffi J M. Trellis and convolutional precoding for transmitter based interference presubtraction. IEEE Trans Commun, 2005, 53: 1220–1230CrossRefGoogle Scholar
  10. 10.
    Bennatan A, Burshtein D, Caire G, et al. Superposition coding for side-information channels. IEEE Trans Inf Theory, 2006, 52: 1872–1889CrossRefMathSciNetGoogle Scholar
  11. 11.
    Peel C, Hochwald B, Swindlehurst A. A vector-perturbation technique for near-capacity multi-antenna multi-user communication. Part I: Channel inversion and regularization. IEEE Trans Commun, 2005, 53: 195–202CrossRefGoogle Scholar
  12. 12.
    Hochwald B, Peel C, Swindlehurst A. A vector-perturbation technique for near-capacity multi-antenna multi-user communication. Part II: Perturbation. IEEE Trans Commun, 2005, 53: 537–544CrossRefGoogle Scholar
  13. 13.
    Windpassinger C, Fisher R F H, Hube J B. Lattice-reduction-aided broadcast precoding. IEEE Trans Commun, 2004, 52: 2057–2060CrossRefGoogle Scholar
  14. 14.
    Spencer Q H, Swindlehurst A L, Haardt M. Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels. IEEE Trans Signal Proc, 2004, 52: 461–471CrossRefMathSciNetGoogle Scholar
  15. 15.
    Hassibi B, Vikalo H. On sphere-decdoing complexity algorithm I. Expected complexity. IEEE Trans Signal Proc, 2005, 53: 2806–2818CrossRefMathSciNetGoogle Scholar
  16. 16.
    Cha J, Ha J, Kang J. Low-complexity iterative QRD-M detection algorithm for V-BLAST systems. Electr Lett, 2007, 43: 1374–1375CrossRefGoogle Scholar
  17. 17.
    Zheng J P, Bai B M, Wang X M. Combing sphere decoding with M-algorithm. In: Proc of IEEE Infor Theory Workshop, Chengdu, China, 2006. 175–178Google Scholar
  18. 18.
    Damen M O, Gamal H E, Caire G. On maximum-likelihood detection and the search for the closest lattice point. IEEE Trans Inf Theory, 2003, 49: 2389–2402CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • JianPing Zheng
    • 1
  • BaoMing Bai
    • 1
  • Xiao Ma
    • 2
  • XinMei Wang
    • 1
  1. 1.State Key Laboratory of Integrated Services NetworksXidian UniversityXi’anChina
  2. 2.Department of Electronics and Communications EngineeringSun Yat-sen UniversityGuangzhouChina

Personalised recommendations