Science China Information Sciences

, Volume 53, Issue 6, pp 1130–1140 | Cite as

Complex conforming Delaunay triangulation

  • XianHai Meng
  • JiGang Li
  • Qin Yang
  • Qiang Cai
  • QiMing Chen
Research Papers

Abstract

A novel algorithm of conforming Delaunay triangulation for curved geometry is presented in the paper. A progress has been made for the problem puzzled Delaunay refinement where curved constraints cannot be accepted as input directly. The algorithm is based on a new sufficient condition for the existence of constraints in triangulation. It requires computing only the intersection between constraints and Voronoi edges or faces instead of the circum-sphere of curved constraint. For the termination of the algorithm when small input angles exist in constraints, a weighted method is applied to ensure that the algorithm can terminate under any input. Some two-dimensional and three-dimensional results are also presented. It is shown that the algorithm has the capability of dealing with both linear and nonlinear constraints in a consistent way, without the need of maintaining triangular meshes on face constraints.

Keywords

mesh generation Delaunay triangulation conforming curved constraints tetrahedralization weight 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lawson C L. Generation a Triangular Grid with Applications of Contour Plotting. Technical Memo. 299. Jet Propulation Laboratory, 1972Google Scholar
  2. 2.
    Bowyer A. Computing dirichlet tessellations. The Comput J, 1981, 24: 162–166CrossRefMathSciNetGoogle Scholar
  3. 3.
    Watson D F. Computing the Delaunay tessellation with applications to Voronoi polytopes. The Comput J, 1981, 24: 167–172CrossRefGoogle Scholar
  4. 4.
    Chew L P. Guaranteed-quality Triangular Meshes, Report TR-98-983, Cornell Univ, 1989Google Scholar
  5. 5.
    Ruppert J. A Delaunay refinement algorithm for quality 2-dimensional mesh generation. J Algorithms, 1995, 18: 548–585MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Shewchuk J R. Tetrahedral mesh generation by Delaunay refinement. In: Proc 14th Annu Sympos Comput Geom, 1998. 86–95Google Scholar
  7. 7.
    Shewchuk J R. Delaunay refinement algorithms for triangular mesh generation. Comput Geom, 2002, 22: 21–74MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Murphy M, Mount D M, Gable C W. A point-placement strategy for conforming Delaunay tetrahedralization. Int J Comput Geom Appl, 2001, 11: 669–682MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Cohen-Steiner D, Verdiere E C, Yvinec M. Conforming Delaunay triangulations in 3D. In: Proc Annu Sympos Comput Geom, 2002. 199–208Google Scholar
  10. 10.
    Pav S. Walkington N. Robust three dimensional delaunay refinement. In: Proc 13th Internat Meshing Roundtable, 2004. 145–156Google Scholar
  11. 11.
    Cheng S W, Poon S H. Graded conforming Delaunay tetrahedralization with bounded radius-edge ratio. In: Proc 14th Annu ACM-SIAM Sympos Discrete Algorithms, Baltimore, Maryland, USA, 2003. 295–304Google Scholar
  12. 12.
    Cheng S W, Dey T K, Ramos E A, et al. Quality meshing for polyhedral with small angles. In: Proc 20th Annu ACM Sympos Comput Geom, Brooklyn, New York, USA, 2004. 290–299Google Scholar
  13. 13.
    Yang Q. Constrainted delaunay triangulation (in Chinese). Ph. D Dissertation. Beijing: Beihang University, 2001. 80–87Google Scholar
  14. 14.
    Cheng S W, Dey T K, Edelsbrunner H, et al. Sliver exudation. J ACM, 2000, 47: 883–904CrossRefMathSciNetGoogle Scholar
  15. 15.
    Shewchuk J R. Theoretically guaranteed Delaunay mesh generation-in practice. In: 13th Internat Meshing Roundtable, Short Course, 2004. 99–105Google Scholar
  16. 16.
    Boivin C, Ollivier-Gooch C. Guaranteed-quality triangular mesh generation for domains with curved boundaries. Int J Numer Meth Eng, 2002, 55: 1185–1213MATHCrossRefGoogle Scholar
  17. 17.
    Chew L P. Guaranteed-quality mesh generation for curved surfaces. In: Proc 9th Annu Sympos Comput Geom, San Diego, California, USA, 1993. 274–280Google Scholar
  18. 18.
    Boissonnat J D, Oudot S. Provably good surface sampling and approximation. In: Proc Eurographics Sympos Geom Process, 2003. 9–18Google Scholar
  19. 19.
    Cheng S W, Dey T K, Ramos E A, et al. Sampling and meshing a surface with guaranteed topology and geometry. In: Proc 20th Annu Sympos Comput Geom, Brooklyn, New York, USA, 2004. 280–289Google Scholar
  20. 20.
    Pav S E, Walkington N J. Delaunay refinement by corner lopping. In: Proc 14th Internat Meshing Roundtable. Berlin: Springer-Verlag, 2005. 165–182CrossRefGoogle Scholar
  21. 21.
    Edelsbrunner H, Shah N. Triangulating topological spaces. Int J Comput Geom Appl, 1997, 7: 365–378MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Wu Z Z, Huai J P, Yang Q. Algorithm for constructing the regular triangulation of a set of weighted points in E d (in Chinese). Chinese J Comput, 2002, 25: 1243–1249MathSciNetGoogle Scholar
  23. 23.
    Meng X H, Li J, Yang Q. Conforming Delaunay triangulation optimized by weighted method (in Chinese). J Beijing Univ Aeronaut Astronaut, 2005, 31: 1284–1288Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • XianHai Meng
    • 1
  • JiGang Li
    • 1
  • Qin Yang
    • 1
  • Qiang Cai
    • 2
  • QiMing Chen
    • 3
  1. 1.NLSDE, School of Computer Science and EngineeringBeiHang UniversityBeijingChina
  2. 2.School of Computer SciencesBeijing Technology and Business UniversityBeijingChina
  3. 3.School of Mechanical Engineering and AutomationBeiHang UniversityBeijingChina

Personalised recommendations