Science China Information Sciences

, Volume 53, Issue 5, pp 1078–1088 | Cite as

Analysis of coupling from core mode to counter-propagating radiation modes in tilted fiber Bragg gratings

  • ShaoHua Lu
  • Ou Xu
  • SuChun Feng
  • XiaoWei Dong
  • Li Pei
  • ShuiSheng Jian
Research Papers


Radiation-mode coupling is stronger and more efficient in tilted fiber Bragg gratings than in other fiber gratings; it has good advantage in such fields as optical communication and optical sensors. A simplified coupled-mode theory (CMT) approach is proposed for what we believe to be the first time, whose validity is demonstrated by comparing its simulation results with that of the complete CMT equations. With the simplified CMT approach, a theoretical spectral analysis of coupling from core mode to counter-propagating radiation modes in reflective tilted fiber Bragg gratings is presented. The influence of grating length, refractive index modulation amplitude and tilt angle is exhaustively investigated on the transmission spectrum characteristics. The different dependences between s-polarized and p-polarized radiation-mode coupling on grating tilt angle are discussed, and the coupling strength of 45°-tilted gratings shows the greatest polarization dependence with the limitation of backward-propagating radiation-mode coupling.


fiber optics tilted fiber Bragg gratings coupled-mode theory radiation-mode coupling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Feder K, Westbrook P, Ging J, et al. A compact, low resolution, wavelength monitor applied to raman pump power monitoring. In: IEEE Conference on Optical Fiber Communications, 2003, 1: 42–43Google Scholar
  2. 2.
    Riziotis C, Zervas M N. Design considerations in optical add/drop multiplexers based on grating-assisted null couplers. IEEE J Lightwave Tech, 2001, 19: 92–104CrossRefGoogle Scholar
  3. 3.
    Chehura E, James S W, Tatam R P. Temperature and strain discrimination using a single tilted fibre Bragg grating. Opt Commun, 2007, 275: 344–347CrossRefGoogle Scholar
  4. 4.
    Chan C, Chen C, Jafari A, et al. Optical fiber refractometer using narrowband cladding-mode resonance shifts. Appl Opt, 2007, 46: 1142–1149CrossRefGoogle Scholar
  5. 5.
    Chen X, Zhou K, Zhang L, et al. Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber. IEEE Photon Tech Lett, 2005, 17: 864–866CrossRefGoogle Scholar
  6. 6.
    Zhao C, Yang X, Demokan M S, et al. Simultaneous temperature and refractive index measurements using a 3 degrees slanted multimode fiber Bragg grating. IEEE J Lightwave Tech, 2006, 24: 879–883CrossRefGoogle Scholar
  7. 7.
    Caucheteur C, Mégret P. Demodulation technique for weakly tilted fiber Bragg grating refractometer. IEEE Photon Tech Lett, 2005, 17: 2703–2705CrossRefGoogle Scholar
  8. 8.
    Chen X, Zhou K, Zhang L, et al. In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure. IEEE Photon Tech Lett, 2006, 18: 2596–2598CrossRefGoogle Scholar
  9. 9.
    Kashyap R, Wyatt R, Campbell R J. Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating. Electron Lett, 1993, 29: 154–156CrossRefGoogle Scholar
  10. 10.
    Feder K S, Westbrook P S, Ging J, et al. In-fiber spectrometer using tilted fiber gratings. IEEE Photon Tech Lett, 2003, 15: 933–935CrossRefGoogle Scholar
  11. 11.
    Westbrook P S, Strasser T A, Erdogan T. In-line polarimeter using blazed fiber gratings. IEEE Photon Tech Lett, 2000, 12: 1352–1354CrossRefGoogle Scholar
  12. 12.
    Peupelmann J, Krause E, Bandemer A, et al. Fibre-polarimeter based on grating taps. Electron Lett, 2002, 38: 1248–1250CrossRefGoogle Scholar
  13. 13.
    Zhou K, Simpson G, Chen X, et al. High extinction ratio in-fiber polarizers based on 45° tilted fiber Bragg gratings. Opt Lett, 2005, 30: 1285–1287CrossRefGoogle Scholar
  14. 14.
    Mihailov S J, Walker R B, Stocki T J, et al. Fabrication of tilted fiber-grating polarization-dependent loss equalizer. Electron Lett, 2001, 37: 284–286CrossRefGoogle Scholar
  15. 15.
    Erdogan T, Sipe J E. Tilted fiber phase gratings. J Opt Soc Am A, 1996, 13: 296–313CrossRefGoogle Scholar
  16. 16.
    Li Y F, Froggatt M, Erdogan T. Volume current method for analysis of tilted fiber gratings. IEEE J Lightwave Tech, 2001, 19: 1580–1591CrossRefGoogle Scholar
  17. 17.
    Walker R B, Mihailov S J, Grobnic D, et al. Shaping the radiation field of tilted fiber Bragg gratings. J Opt Soc Am B, 2005, 22: 962–975CrossRefGoogle Scholar
  18. 18.
    Li Y, Wielandy S, Reyes P I, et al. Scattering from nonuniform tilted fiber gratings. Opt Lett, 2004, 29: 1330–1332CrossRefGoogle Scholar
  19. 19.
    Erdogan T, Sipe J E. Radiation-mode coupling loss in tilted fiber phase gratings. Opt Lett, 1995, 20: 1838–1840CrossRefGoogle Scholar
  20. 20.
    Parker R, Sterke CM. Reduced cladding mode losses in tilted gratings that are rotationally symmetric. IEEE J Lightwave Tech, 2000, 18: 2133–2138CrossRefGoogle Scholar
  21. 21.
    Lee K S, Erdogan T. Fiber mode conversion with tilted gratings in an optical fiber. J Opt Soc Am A, 2001, 18: 1176–1185CrossRefGoogle Scholar
  22. 22.
    Lee K S, Erdogan T. Fiber mode coupling in transmissive and reflective tilted Fiber gratings. Appl Opt, 2000, 39: 1394–1404CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • ShaoHua Lu
    • 1
    • 2
  • Ou Xu
    • 1
    • 2
  • SuChun Feng
    • 1
    • 2
  • XiaoWei Dong
    • 1
    • 2
  • Li Pei
    • 1
    • 2
  • ShuiSheng Jian
    • 1
    • 2
  1. 1.Key Laboratory of All Optical Network & Advanced Telecommunication Network of EMCBeijing Jiaotong UniversityBeijingChina
  2. 2.Institute of Lightwave TechnologyBeijing Jiaotong UniversityBeijingChina

Personalised recommendations