Science China Information Sciences

, Volume 53, Issue 5, pp 920–931 | Cite as

An interactive rendering system using hierarchical data structure for earth-scale clouds

  • Yoshinori DobashiEmail author
  • Tsuyoshi Yamamoto
  • Tomoyuki Nishita
Research Papers


This paper presents an interactive system for realistic visualization of earth-scale clouds. Realistic images can be generated at interactive frame rates while the viewpoint and the sunlight directions can be changed interactively. The realistic display of earth-scale clouds requires us to render large volume data representing the density distribution of the clouds. However, this is generally time-consuming and it is difficult to achieve the interactive performance, especially when the sunlight direction can be changed. To address this, our system precomputes the integrated intensities and opacities of clouds for various viewing and sunlight directions. This idea is combined with a novel hierarchical data structure for further acceleration. The photorealism of the final image is improved by taking into account the atmospheric effects and shadows of clouds on the earth. We demonstrate the usefulness of our system by an application to a space flight simulation.


computer graphics efficient rendering large-scale clouds level of detail light scattering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gobbetti E, Marton F. Far Voxels-A multiresolution framework for interactive rendering of huge complex 3D models on commodity graphics platforms. ACM Trans Graph, 2005, 24: 878–885CrossRefGoogle Scholar
  2. 2.
    Kajiya J T, Herzen B P V. Ray tracing volume densities. Comput Graph, 1984, 18: 165–174CrossRefGoogle Scholar
  3. 3.
    Sloan P P, Kautz J, Snyder J. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans Graph, 2002, 21: 527–536CrossRefGoogle Scholar
  4. 4.
    Harris M J, Lastra A. Real-time cloud rendering. Comput Graph Forum, 2001, 20: 76–84CrossRefGoogle Scholar
  5. 5.
    Szirmay-Kalos L, Sbert M, Umenhoffer T. Real-time multiple scattering in participating media with illumination networks. In: Eurographics Symposium on Rendering. 2005. 277–282Google Scholar
  6. 6.
    Chen Y, Tong X, Wang J, et al. Shell texture functions. ACM Trans Graph, 2004, 23: 343–353CrossRefGoogle Scholar
  7. 7.
    Song Y, Chen Y, Tong X, et al. Shell radiance texture functions. The Visual Comput, 2005, 21: 774–782CrossRefGoogle Scholar
  8. 8.
    Guthe S, Wand M, Gonser J, et al. Interactive rendering of large volume data sets. In: Proc IEEE Visualization, 2002. 53–60Google Scholar
  9. 9.
    Wang C, Gao J, Li L, et al. A multiresolution volume rendering framework for large-scale time-varying data visualization. Volume Graph, 2005, 11–19Google Scholar
  10. 10.
    Childs H, Duchaineau M, Ma K L. A scalable, hybrid scheme for volume rendering massive data sets. In: Proc Eurographics Symposium on Parallel Graphics and Visualization, 2007. 153–162Google Scholar
  11. 11.
    Gao J, Huang J, Shen H W, et al. Visibility culling using plenoptic opacity function for large scale data visualization. In: Proc. IEEE Visualization, 2003. 342–348Google Scholar
  12. 12.
    Vlasic D, Pfister H, Molinov S, et al. Opacity light field: interactive rendering of surface light fields with view-dependent opacity. In: The 2003 Symposium on Interactive 3D Graphics. 2003, 65–74Google Scholar
  13. 13.
    Hadwiger M, Kratz A, Sigg C, et al. GPU-accelerated deep shadow maps for direct volume rendering. In: Proc. Graphics Hardware, 2006. 49–52Google Scholar
  14. 14.
    Ribarsky W, Faust N, Wartell Z, et al. Visual query of time-dependent 3D weather in a global geospatial environment. In: Ladner R, Shaw K, Abdelgerfi M, eds. Mining Spatio-Temporal Information Systems. Berlin: Springer, 2002Google Scholar
  15. 15.
    Riley K, Song Y, Kraus M, et al. Visualization of structured nonuniform grids. IEEE Comput Graph Appl, 2006, 25: 46–55CrossRefGoogle Scholar
  16. 16.
    Nishita T, Shirai T, Tadamura K, et al. Display of the earth taking into account atmospheric scattering. In: Proc. SIGGRAPH 1993. 175–182Google Scholar
  17. 17.
    Dobashi Y, Yamamoto T, Nishita T. Interactive rendering of atmospheric effects using graphics hardware. In: Proc Graphics Hardware, 2002. 99–108Google Scholar
  18. 18.
    Rusinkiewicz S, Levoy M. QSplat: a multiresolution point rendering system for large meshes. In: Proc ACM SIGGRAPH, 2000. 343–352Google Scholar
  19. 19.
    Linde Y, Buzo A, Gray R. An algorithm for vector quantizer design. IEEE Trans Commun, 1980, 28: 84–95CrossRefGoogle Scholar
  20. 20.
    Segal M, Korobkin C, Widenfelt R, et al. Fast shadows and lighting effects using texture mapping. Comput Graph, 1992, 26: 249–252CrossRefGoogle Scholar
  21. 21.
    Guennebaud G, Berthe L, Paulin M. Deferred splatting. Comput Graph Forum, 2004, 23: 653–660CrossRefGoogle Scholar
  22. 22.
    Cabral B, Cam N, Foran J. Accelerated volume rendering and tomographics reconstruction using texture mapping hardware. In: Proc ACM Symposium on Volume Visualization, 1990. 91–98Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yoshinori Dobashi
    • 1
    Email author
  • Tsuyoshi Yamamoto
    • 1
  • Tomoyuki Nishita
    • 2
  1. 1.Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
  2. 2.Graduate School of Frontier ScienceThe University of TokyoKashiwaJapan

Personalised recommendations