Science China Information Sciences

, Volume 53, Issue 5, pp 911–919 | Cite as

Subsurface scattering using splat-based diffusion in point-based rendering

  • Hyeon-Joong Kim
  • Bernd Bickel
  • Markus Gross
  • Soo-Mi Choi
Research Papers


Point-based graphics has gained much attention as an alternative to polygon-based approaches because of its simplicity and flexibility. However, current point-based techniques do not provide a sufficient rendering quality for translucent materials such as human skin. In this paper, we propose a point-based framework with subsurface scattering of light, which is important to create the soft and semi-translucent appearance of human skin. To accurately simulate subsurface scattering in multilayered materials, we present splat-based diffusion to apply a linear combination of several Gaussian basis functions to each splat in object space. Compared to existing point-based approaches, our method offers a significantly improved visual quality in rendering human faces and provides a similar visual quality to polygon-based rendering using the texture space diffusion technique. We demonstrate the effectiveness of our approach in rendering scanned faces realistically.


subsurface scattering point-based rendering skin rendering diffusion profile sum of Gaussian 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Guan X, Mueller K. Point-based surface rendering with motion blur. In: Symposium on Point-Based Graphics 2004, 2004Google Scholar
  2. 2.
    Zakaria N, Seidel H. Interactive stylized silhouette for point-sampled geometry. In: GRAPHITE 2004, 2004. 242–249Google Scholar
  3. 3.
    Zhang Y, Pajarola R. Single-pass point rendering and transparent shading. In: Symposium on Point-Based Graphics 2006, 2006. 37–48Google Scholar
  4. 4.
    d’Eon E, Luebke D, Enderton E. Efficient rendering of human skin. In: Rendering Techniques 2007: 18th Eurographics Workshop on Rendering, 2007. 147–158Google Scholar
  5. 5.
    Donner C, Jensen H W. Light diffusion in multilayered translucent materials. ACM Trans Graph, 2005, 24: 1032–1039CrossRefGoogle Scholar
  6. 6.
    Zwicker M, Pfister H, van Baar J, et al. Surface splatting. In: Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 2001. 371–378Google Scholar
  7. 7.
    Donner C, Jensen H W. A spectral BSSRDF for shading human skin. In: Rendering Techniques 2006: 17th Eurographics Workshop on Rendering, 2006. 409–418Google Scholar
  8. 8.
    Wang R, Tran J, Luebke D. All-frequency interactive relighting of translucent objects with single and multiple scattering. ACM Trans Graph, 2005, 24: 712–719CrossRefGoogle Scholar
  9. 9.
    Wang L, Wang W, Dorsey J, et al. Real-time rendering of plant leaves. ACM Trans Graph, 2005, 24: 1202–1207CrossRefGoogle Scholar
  10. 10.
    Levoy M, Whitted T. The use of points as display primitives. Technical Report, CS Departement, University of North Carolina at Chapel Hill, 1985Google Scholar
  11. 11.
    Grossman J P, Dally W J. Point sample rendering. In: Eurographics Rendering Workshop 1998, 1998. 181–192Google Scholar
  12. 12.
    Pfister H, Zwicker M, van Baar J, et al. Surfels: Surface elements as rendering primitives. In: Proceedings of ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference Series, 2000. 335–342Google Scholar
  13. 13.
    Dachsbacher C, Vogelgsang C, Stamminger M. Sequential point trees. ACM Trans Graph, 2003, 22: 657–662CrossRefGoogle Scholar
  14. 14.
    Coconu L, Hege H. Hardware-accelerated pointbased rendering of complex scenes. In: Rendering Techniques 2002: 13th Eurographics Workshop on Rendering, 2002. 43–52Google Scholar
  15. 15.
    Botsch M, Kobbelt L. High-quality point-based rendering on modern gpus. In: 11th Pacific Conference on Computer Graphics and Applications, 2003. 335–343Google Scholar
  16. 16.
    Zwicker M, Rasanen J, Botsch M, et al. Perspective accurate splatting. In: Graphics Interface 2004, 2004. 247–254Google Scholar
  17. 17.
    Botsch M, Spernat M, Kobbelt L. Phong splatting. In: Symposium on Point-based Graphics 2004, 2004.Google Scholar
  18. 18.
    Botsch M, Hornung A, Zwicker M, et al. High-quality surface splatting on todays gpus. In: Symposium on Point-Based Graphics 2005, 2005. 17–24Google Scholar
  19. 19.
    Hanrahan P, Krueger W. Reflection from layered surfaces due to subsurface scattering. In: Proceedings of SIGGRAPH 93, Computer Graphics Proceedings, Annual Conference Series, 1993. 165–174Google Scholar
  20. 20.
    Jensen H W, Marschner S R, Levoy M, et al. A practical model for subsurface light transport. In: Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 2001. 511–518Google Scholar
  21. 21.
    Weyrich T, Matusik W, Pfister H, et al. Analysis of human faces using a measurement-based skin reflectance model. ACM Trans Graph, 2006, 25: 1013–1024CrossRefGoogle Scholar
  22. 22.
    Green S. GPU Gems, 7th ed. Addison Wesley, ch. Real-time approximations to subsurface scattering, 2004. 263–278Google Scholar
  23. 23.
    Dachsbacher C, Stamminger M. Translucent shadow maps. In: Eurographics Symposium on Rendering: 14th Eurographics Workshop on Rendering, 2003. 197–201Google Scholar
  24. 24.
    Kelemen C, Szirmay-Kalos L. A microfacet based coupled specular-matte brdf model with importance sampling. In: Eurographics Short Presentations, 2001. 25–34Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hyeon-Joong Kim
    • 1
  • Bernd Bickel
    • 2
  • Markus Gross
    • 2
  • Soo-Mi Choi
    • 1
  1. 1.Department of Computer EngineeringSejong UniversitySeoulKorea
  2. 2.Computer Graphics LabETH ZurichZurichSwitzerland

Personalised recommendations