Science China Information Sciences

, Volume 53, Issue 3, pp 506–514 | Cite as

Asymmetric encryption and signature method with DNA technology

  • XueJia Lai
  • MingXin Lu
  • Lei Qin
  • JunSong Han
  • XiWen Fang
Research Papers

Abstract

This paper proposes DNA-PKC, an asymmetric encryption and signature cryptosystem by combining the technologies of genetic engineering and cryptology. It is an exploratory research of biological cryptology. Similar to conventional public-key cryptology, DNA-PKC uses two pairs of keys for encryption and signature, respectively. Using the public encryption key, everyone can send encrypted message to a specified user, only the owner of the private decryption key can decrypt the ciphertext and recover the message; in the signature scheme, the owner of the private signing key can generate a signature that can be verified by other users with the public verification key, but no else can forge the signature. DNA-PKC differs from the conventional cryptology in that the keys and the ciphertexts are all biological molecules. The security of DNA-PKC relies on difficult biological problems instead of computational problems; thus DNA-PKC is immune from known attacks, especially the quantum computing based attacks.

Keywords

cryptology asymmetric encryption digital signature biological cryptology DNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wiesner S. Conjugate coding. SIGACT News, 1983, 15: 78–88CrossRefGoogle Scholar
  2. 2.
    Chou C W, Laurat J L, Deng H, et al. Functional quantum nodes for entanglement distribution over scalable quantum networks. Science, 2007, 316: 1316–1320CrossRefGoogle Scholar
  3. 3.
    Bennett C H, Brassard G. Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. Bangalore, India: Bangalore Press, 1984. 175–179Google Scholar
  4. 4.
    Bennett C H. Quantum cryptography using any two nonorthogonal states. Phys Rev Lett, 1992, 68: 3121–3124MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67: 661–663MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hemmer P, Wrachtrup J. Where is my quantum computer? Science, 2009, 324: 473–474CrossRefGoogle Scholar
  7. 7.
    Shor P W. Algorithms for quantum computation: discrete log and factoring. In: Goldwasser S, ed. Proceedings of the 35th Symposium on Foundations of Computer Science. Los Alamitos, CA: IEEE Computer Society Press, 1994. 124–134CrossRefGoogle Scholar
  8. 8.
    Adleman L. Molecular computation of solutions to combinatorial problems. Science, 1994, 266: 1021–1023CrossRefGoogle Scholar
  9. 9.
    Ehud S, Binyamin G. RNA computing in a living cell. Science, 2008, 322: 387–388CrossRefGoogle Scholar
  10. 10.
    Guarnieri F, Fliss M, Bancroft C. Making DNA add. Science, 1996, 273: 220–223CrossRefGoogle Scholar
  11. 11.
    Sakamoto K, Gouzu H, Komiya K, et al. Molecular computation by DNA hairpin formation. Science, 2000, 288: 1223–1226CrossRefGoogle Scholar
  12. 12.
    Fastest DNA computer. Science, 2005, 308: 195Google Scholar
  13. 13.
    Liu Q, Wang L, Frutos A G, et al. DNA computing on surfaces. Nature, 2000, 403: 175–179CrossRefGoogle Scholar
  14. 14.
    Roweis S, Winfree1 E, Burgoyne R, et al. A sticker based model for DNA computation. J Comput Biol, 1998, 5: 615–629CrossRefGoogle Scholar
  15. 15.
    Gifford D K. On the path to computation with DNA. Science, 1994, 266: 993–994CrossRefGoogle Scholar
  16. 16.
    Ouyang Q, Kaplan P D, Liu S, et al. DNA solution of the maximal clique problem. Science, 1997, 278: 446–449CrossRefGoogle Scholar
  17. 17.
    Lipton R J. Using DNA to solve NP-complete problems. Science, 1995, 268: 542–545CrossRefGoogle Scholar
  18. 18.
    Ravinderjit S, Braich R, Chelyapov N, et al. Solution of a 20-variable 3-SAT problem on a DNA computer. Science, 2002, 296: 499–502CrossRefGoogle Scholar
  19. 19.
    Adleman L M, Rothemund P W K, Roweiss S, et al. On applying molecular computation to the data encryption standard. J Comput Biol, 1999, 6: 53–63CrossRefGoogle Scholar
  20. 20.
    Boneh D, Dunworth C, Lipton R J. Breaking DES using a molecular computer. In: DNA Based Computers I. Providence, USA: American Mathematical Society, 1996. 37–65Google Scholar
  21. 21.
    Gehani A, LaBean T H, Reif J H. DNA-based cryptography. In: DNA Based Computers V. Providence, USA: American Mathematical Society, 2000. 233–249Google Scholar
  22. 22.
    Clelland C T, Risca V, Bancroft C. Hiding messages in DNA microdots. Nature, 1999, 399: 533–534CrossRefGoogle Scholar
  23. 23.
    Leier A, Richter C, Banzhaf W, et al. Cryptography with DNA binary strands. Biosystems, 2000, 57: 13–22CrossRefGoogle Scholar
  24. 24.
    Xiao G Z, Lu M X, Qin L, et al. New field of cryptograhy: DNA cryptography. Chinese Sci Bull, 2006, 51: 1413–1420MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Lu M X, Lai X J, Xiao G Z, et al. A symmetric-key cryptosystem with DNA technology. Sci China Ser F-Inf Sci, 2007, 50: 324–333MATHCrossRefGoogle Scholar
  26. 26.
    Watson J D, Hopkins N H, Roberts J W, et al. Molecular Biology of the Gene. 4th ed. Menlo Park, CA: The Benjamin/Cummings Publishing Co., Inc. 1987Google Scholar
  27. 27.
    Seeman N C. Nanotechnology and the double helix. Sci Am, 2004, 290: 34–43CrossRefGoogle Scholar
  28. 28.
    Fodor S P, Read J L, Pirrung M C, et al. Light-directed, spatially addressable parallel chemical synthesis. Science, 1991, 251: 767–773CrossRefGoogle Scholar
  29. 29.
    Pease A C, Solas D, Sullivan E J, et al. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci USA, 1994, 91: 5022–5026CrossRefGoogle Scholar
  30. 30.
    Schena M, Shalon D, Ronald W, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270: 467–470CrossRefGoogle Scholar
  31. 31.
    Shalon D, Smith S J, Brown P O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res, 1996, 6: 639–645CrossRefGoogle Scholar
  32. 32.
    Weiler J, Gausepohll H, Hauser N, et al. Hybridisation based DNA screening on peptide nucleic acid (PNA) oligomer arrays. Nucleic Acids Research, 1997, 25: 2792–2799CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • XueJia Lai
    • 1
  • MingXin Lu
    • 2
  • Lei Qin
    • 3
  • JunSong Han
    • 4
  • XiWen Fang
    • 1
  1. 1.Department of Computer Science & EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.School of National Information SecurityNanjing UniversityNanjingChina
  3. 3.BIOCOMPLEXTorontoCanada
  4. 4.National Engineering Center for BioChip at ShanghaiShanghaiChina

Personalised recommendations