Science China Information Sciences

, Volume 53, Issue 4, pp 967–977 | Cite as

A new approach of motion compensation for synthetic wideband radar under multitarget environment

Research Papers


This paper studies target velocity estimation for stepped frequency radar with up-down linear frequency coding under multi-target environment. It is shown that target matching is needed in the estimation of target velocity when targets have unequal velocities. Based on monopulse radar scheme, this target matching process is extended to angular domain, and an angle matching method of velocity measurement is proposed to resolve different velocities of multi-target. The method is analyzed from different aspects in terms of matching probability and CRLB of velocity estimation. Simulation results demonstrate that it is effective and feasible.


up-down stepped frequency multitarget velocity estimation monopulse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wehner D R. High Resolution Radar. Norwood, MA: Artech House, 1994. 36–40Google Scholar
  2. 2.
    Lei W, Long T, Han Y Q. Moving targets imaging for stepped frequency radar. In: IEEE Proc. of ICSP 2000. Beijing, China, 2000. 1851–1855Google Scholar
  3. 3.
    Wong S K, Dulf G, Reseborough E. Analysis of distortion in the high range resolution profile from a perturbed target. IEE Proc Radar Sonar Navig, 2001, 148: 353–362CrossRefGoogle Scholar
  4. 4.
    Gill G S. Simultaneous pulse compression and Doppler processing with step frequency waveform. Electron Lett, 1996, 32: 2178–2179CrossRefGoogle Scholar
  5. 5.
    Long T. Doppler performance analysis of frequency stepped radar signal. Modern Radar, 1996, 18: 31–37Google Scholar
  6. 6.
    Mao E K, Long T, Han Y Q. Digital signal processing of stepped frequency radar. Acta Aeronaut Et Astronaut Sin. 2001, 22: 16–25Google Scholar
  7. 7.
    Shen Y Y, Liu Y T. A step train design for high resolution range imaging with Doppler resolution processing. Chinese J Electron, 1999, 18: 196–199Google Scholar
  8. 8.
    Jiang N Z, Wang M L, Li S H, et al. Compensation method of stepped frequency radar HRR imaging. J Electron Inf Tech, 1999, 21: 665–670Google Scholar
  9. 9.
    Liu Z, Zhang S H. Estimation of target motion parameter in a stepped-frequency pulses radar. Acta Electron Sinica, 2000, 28: 43–45Google Scholar
  10. 10.
    Rohling H, Mende R. US Patent, 6147638, 2000-11-14Google Scholar
  11. 11.
    Levanon N. Stepped-frequency pulse-train radar signal. IEE Proc Radar Sonar Navig, 2002, 149: 297–309CrossRefGoogle Scholar
  12. 12.
    Richard C G. Radar System Performance Modeling. 2nd ed. Norwood, MA: Artech House, 2005. 169–172Google Scholar
  13. 13.
    Blair W D, Brandt-Pearce M. Unresolved Rayleigh target detection using monopulse measurements. IEEE Trans Aerospace Electron Syst, 1998, 34: 543–551CrossRefGoogle Scholar
  14. 14.
    Aleksandar D. Cramer-Rao bounds for estimating range, velocity, and direction with an active array. IEEE Trans Signal Process, 2001, 49: 1122–1137CrossRefGoogle Scholar
  15. 15.
    Drozdek A. Data Structures and Algorithms in C++. 3rd ed. Boston: Course Technology, 2005. 45–48Google Scholar

Copyright information

© Science in China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Radar Research LaboratoryBeijing Institute of TechnologyBeijingChina

Personalised recommendations