Science China Information Sciences

, Volume 53, Issue 2, pp 398–404 | Cite as

Chaos correlation optical time domain reflectometry

Research Papers

Abstract

We propose a novel correlation optical time domain reflectometry (C-OTDR) of using broadband chaotic light. This reflectometry has the advantage over the conventional OTDR and the pseudorandom signal C-OTDR in range-independent spatial resolution. We employ a laser diode with feedback from a long fiber ring cavity as the source of chaotic probe light. Experimental and numerical studies show that the chaotic light has broad and flat spectrum, and excellent correlation properties. Using this broadband chaotic laser, we experimentally demonstrate the proposed chaos C-OTDR for locating the fiber reflection events, and analyze the spatial resolution and dynamic range. The results show that the chaos C-OTDR can realize a range-independent resolution of 6 cm and its dynamic range is at least 25 km.

Keywords

optical time domain reflectometry chaos laser diode optical feedback 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Healey P. Instrumentation principles for optical time domain reflectometry. J Phys E: Sci Instrum, 1986, 19: 334–341CrossRefGoogle Scholar
  2. 2.
    A technical note on OOS-01, Hamamatsu Photonics Inc., Hamamatsu, Japan, 1987Google Scholar
  3. 3.
    Legré M, Thew R, Zbinden H, et al. High resolution optical time domain reflectometer based on 1.55 m up-conversion photon-counting module. Opt Express, 2007, 15: 8237–8242CrossRefGoogle Scholar
  4. 4.
    Wielandy S, Fishteyn M, Zhu B. Optical performance monitoring using nonlinear detection. J Lightwave Tech, 2004, 22: 784–793CrossRefGoogle Scholar
  5. 5.
    Jones K R, Trevino G I S, Jonsson R H. Sequence time domain reflectometry using complementary golay codes. US Patent, 6885954, 2005Google Scholar
  6. 6.
    Takushima Y, Chung Y C. Optical reflectometry based on correlation detection and its application to the in-service monitoring of WDM passive optical network. Opt Express, 2007, 15: 5318–5326CrossRefGoogle Scholar
  7. 7.
    Lin F Y, Liu J M. Chaotic radar using nonlinear laser dynamics. IEEE J Quantum Electron, 2004, 40: 815–820CrossRefGoogle Scholar
  8. 8.
    Lin F Y, Liu J M. Chaotic lidar. IEEE J Sel Topics Quantum Electron, 2004, 10: 991–997CrossRefGoogle Scholar
  9. 9.
    Wang A B, Wang Y C, He H C. Enhancing the bandwidth of the optical chaotic signal generated by semiconductor laser with optical feedback. IEEE Photon Tech Lett, 2008, 20: 1633–1635CrossRefGoogle Scholar
  10. 10.
    Wang Y C, Wang B J, Wang A B. Chaotic correlation optical time domain reflectometer utilizing laser diode. IEEE Photon Tech Lett, 2008, 20: 1636–1638CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations