Science China Information Sciences

, Volume 53, Issue 3, pp 483–493 | Cite as

Embedded DHT overlays in virtual computing environments

Research Papers

Abstract

With the rapid development of computing and networking technologies, people propose to build harmonious, trusted and transparent Internet-based virtual computing environments (iVCE). The overlay-based organization of dynamic Internet resources is an important approach for iVCE to realizing efficient resource sharing. DHT-based overlays are scalable, low-latency and highly available; however, the current DHT overlay (SKY) in iVCE cannot satisfy the “trust” requirements of Internet applications. To address this problem, in this paper we modify SKY and propose TrustedSKY, an embedded DHT overlay technique in iVCE which supports applications to select trusted nodes to form a “trusted subgroup” in the base overlay and realize secure and trusted DHT routing.

Keywords

Internet-based virtual computing environment (iVCE) DHT overlay TrustedSKY 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lu X C, Wang H M, Wang J. Internet-based virtual computing environments (iVCE): Concepts and architecture. Sci China Ser F-Inf Sci, 2006, 49: 681–701CrossRefMathSciNetGoogle Scholar
  2. 2.
    Stephanos A T, Diomidis S. A survey of peer-to-peer content distribution technologies. ACM Comput Surv, 2004, 36: 335–371CrossRefGoogle Scholar
  3. 3.
    Zhang Y M, Lu X C, Li D S. SKY: An efficient Peer-to-Peer network based on Kautz graphs. Sci China Ser F-Inf Sci, 2009, 52: 588–601MATHCrossRefGoogle Scholar
  4. 4.
    Trusted Computing Group. TCG specification architecture overview [EB/OL]. [2005-03-01]. https://www.trustedcomputinggroup.org
  5. 5.
    Lin C, Peng X H. Research on trustworthy networks (in Chinese). J Comput, 2005, 28: 751–758Google Scholar
  6. 6.
    Shen C X, Zhang H G, Feng D G, et al. Survey of information security. Sci China Ser F-Inf Sci, 2007, 50: 273–298MATHCrossRefGoogle Scholar
  7. 7.
    Fan S Q, Han W B. Random properties of the highest level sequences of primitive sequences over Z 2 e. IEEE Trans Inf Theory, 2003, 49: 1553–1557MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Zhang H G, Feng X T, Tan Z P, et al. Research on evolutionary cryptosystems and evolutionary DES (in Chinese). J Comput, 2003, 26: 1678–1684Google Scholar
  9. 9.
    Patel J, Luke T W T, Jennings N R, et al. A probabilistic trust model for handling inaccurate reputation sources. In: Proceedings of Trust Management (iTrust), Paris, France, 2005. 193–209Google Scholar
  10. 10.
    Tague P, Slater D, Rogers J, et al. Evaluating the vulnerability of network traffic using joint security and routing analysis. IEEE Trans Depend Secure, 2009, 6: 111–123CrossRefGoogle Scholar
  11. 11.
    Karger D R, Ruhl M. Diminished chord: A protocol for heterogeneous subgroup formation in peer-to-peer networks. In: Proceedings of IEEE IPTPS, La Jolla, CA, USA, 2004. 288–297Google Scholar
  12. 12.
    Zhang Y M, Chen L, Lu X C, et al. Enabling routing control in a DHT. IEEE J Sel Area Comm, 2010, 28: 1–11MATHCrossRefGoogle Scholar
  13. 13.
    Fiol M A, Llado A S. The partial line digraph technique in the design of large interconnection networks. IEEE Trans Comput, 1992, C-41: 848–857CrossRefMathSciNetGoogle Scholar
  14. 14.
    Kautz W H. The design of optimum interconnection networks for multiprocessors. Architecture and design of Digital computer. NATO advances summer Institute, 1969. 249–277Google Scholar
  15. 15.
    Yalagandula P, Dahlin M. A scalable distributed information management system. In: Proceedings of ACM SIGCOMM, Portland, DR, USA, 2004. 379–390Google Scholar
  16. 16.
    Rowstron A I T, Druschel P. Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Middleware, Heidelberg, Germany, 2001. 329–350Google Scholar
  17. 17.
    Harvey N J A, Jones M B, Saroiu S, et al. Skipnet: A scalable overlay network with practical locality properties. In: Proceedings of USENIX Symposium on Internet Technologies and Systems, Seattle, WA, USA, 2003Google Scholar
  18. 18.
    Mislove A, Druschel P. Providing administrative control and autonomy in structured peer-to-peer overlays. In: Proceedings of IPTPS, La Jolla, CA, USA, 2004. 162–172Google Scholar
  19. 19.
    Ganesan P, Gummadi P K, Molina H G. Canon in G major: Designing DHTs with hierarchical structure. In: Proceedings of IEEE ICDCS, Tokyo, Japan, 2004. 263–272Google Scholar
  20. 20.
    Stoica I, Morris R, Nowell D L, et al. Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Trans Netw, 2003, 11: 17–32CrossRefGoogle Scholar
  21. 21.
    Zhao B Y, Huang L, Stribling J, et al. Tapestry: a resilient global-scale overlay for service deployment. IEEE J Sel Area Comm, 2004, 22: 41–53CrossRefGoogle Scholar
  22. 22.
    Walsh K, Sirer E G. Experience with an object reputation system for peer-to-peer file-sharing. In: Proceedings of USENIX NSDI, San Jose, CA, USA, 2006Google Scholar
  23. 23.
    Vlachou A, Doulkeridis C, Norvag K, et al. On efficient top-k query processing in highly distributed environments. In: Proceedings of ACM SIGMOD, Vancouver, BC, Canada, 2008Google Scholar
  24. 24.
    Wang S Y, Ooi B C, Tung A K H, et al. Efficient skyline query processing on peer-to-peer networks. In: Proceedings of IEEE ICDE, Istanbul, Turkey, 2007Google Scholar
  25. 25.
    Bawa M, Condie T, Ganesan P. LSH forest: self-tuning indexes for similarity search. In: Proceedings of WWW, Chiba, Japan, 2005. 651–660Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.National Laboratory for Parallel and Distributed Processing (PDL)ChangshaChina
  2. 2.School of ComputerNational University of Defense TechnologyChangshaChina

Personalised recommendations