Advertisement

The generalization of some trellis properties of linear codes to group codes

  • HaiBin KanEmail author
  • XueFei Li
  • Hong Shen
Article
  • 39 Downloads

Abstract

In this paper, we discuss some trellis properties for codes over a finite Abelian group, which are the generalization of the corresponding trellis properties for linear codes over a field. Also, we also investigate difficulties when we try to generalize a property of a tail-biting trellis for a linear code over a field to a group code.

Keywords

atomic spans trellises tail-biting trellises minimal span form biproper p-bases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vardy A. Trellis structure of codes. Handbook of Coding Theory. Pless V S, Huffman W C, eds. Amsterdam: Elsevier, 1998. 1989–2118Google Scholar
  2. 2.
    Kschischang F R, Sorokine V. On the trellis structure of block codes. IEEE Trans Inform Theory, 1995, 41: 1924–1937zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Forney G D Jr. Dimension/length profiles and trellis complexity of linear block codes. IEEE Trans Inform Theory, 1994, 40(6): 1741–1752zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Vazirani V, Saran H, Rajan B. An efficient algorithm for constructing minimal trellises for codes over finite Abelian groups. IEEE Trans Inform Theory, 1996, 42: 1839–1854zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Koetter R, Vardy A. On the theory of linear trellises. Information, Coding and Mathematics. Blaum M, ed. Boston: Kluwer, 2002. 323–354Google Scholar
  6. 6.
    Koetter R, Vardy A. The structure of tail-biting trellises: minimality and basic principals. IEEE Trans Inform Theory, 2003, 49: 2081–2105CrossRefMathSciNetGoogle Scholar
  7. 7.
    Calderbank A R, Forney G D Jr, Vardy A. Minimal tail-biting trellises: the Golay code and more. IEEE Trans Inform Theory, 1999, 45: 1435–1455zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kan H B, Hong S. A note on Tanner graph for group block codes and lattices. IEICE Trans Fundamentals, 2004, E87-A(8): 2182–2184Google Scholar
  9. 9.
    Kan H B, Hong S. Trellis properties of product codes. IEICE Trans Fundamentals, 2005, E88-A(1): 353–358CrossRefGoogle Scholar
  10. 10.
    Kan H B, Hong S. A relation between the characteristic generators of a linear code and its dual. IEEE Trans Inform Theory, 2005, 51(3): 1199–1202CrossRefMathSciNetGoogle Scholar
  11. 11.
    Kan H B, Hong S. Trellis properties of group codes. In: the 6th International Conference Advanced Communication Technology. 2005, 1: 203–206Google Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.School of Computer ScienceFudan UniversityShanghaiChina
  2. 2.School of Computer ScienceUniversity of AdelaideAdelaideAustralia

Personalised recommendations