Removing local irregularities of triangular meshes with highlight line models

  • JunHai Yong
  • BaiLin Deng
  • FuHua Cheng
  • Bin Wang
  • Kun Wu
  • HeJin Gu
Article

Abstract

The highlight line model is a powerful tool in assessing the quality of a surface. It increases the flexibility of an interactive design environment. In this paper, a method to generate a highlight line model on an arbitrary triangular mesh is presented. Based on the highlight line model, a technique to remove local shape irregularities of a triangular mesh is then presented. The shape modification is done by solving a minimization problem and performing an iterative procedure. The new technique improves not only the shape quality of the mesh surface, but also the shape of the highlight line model. It provides an intuitive and yet suitable method for locally optimizing the shape of a triangular mesh.

Keywords

highlight lines mesh optimization shape modification model repair 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burdea G, Coiffet P. Virtual Reality Technology. 2nd ed. Hoboken: Wiley Interscience, 2003. 157–209Google Scholar
  2. 2.
    Taubin G. A signal processing approach to fair surface design. In: Proceedings of Siggraph 95. New York: Association for Computing Machinery, 1995. 351–358CrossRefGoogle Scholar
  3. 3.
    Liu X, Bao H, Heng P A, et al. Constrained fairing for meshes. Comput Graph Forum, 2001, 20(2): 115–123MATHCrossRefGoogle Scholar
  4. 4.
    Vollmer J, Mencl R, Müller H. Improved Laplacian smoothing of noisy surface meshes. Comput Graph Forum, 1999, 18(3): 131–138CrossRefGoogle Scholar
  5. 5.
    Alexa M. Wiener filtering of meshes. In: Wyvill G, ed. Proceedings of Shape Modeling International 2002. Los Alamitos: IEEE Computer Society, 2002. 51–60CrossRefGoogle Scholar
  6. 6.
    Peng J, Strela V, Zorin D. A simple algorithm for surface denoising. In: Proceedings of IEEE Visualization 2001. Los Alamitos: IEEE Computer Society, 2001. 107–112CrossRefGoogle Scholar
  7. 7.
    Fleishman S, Drori I, Cohen-or D. Bilateral mesh denoising. ACM Trans Graph, 2003, 22(3): 950–953CrossRefGoogle Scholar
  8. 8.
    Jones T R, Durand F, Desbrun M. Non-iterative, feature-preserving mesh smoothing. ACM Trans Graph, 2003, 22(3): 943–949CrossRefGoogle Scholar
  9. 9.
    Desbrun M, Meyer M, Schröder P, et al. Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of Siggraph 99. New York: Association for Computing Machinery, 1999. 317–324CrossRefGoogle Scholar
  10. 10.
    Bobenko A I, Schröder P. Discrete Willmore flow. In: Desbrun M, Pottmann H, eds. Geometry Processing 2005. Wellesley: A K Peters, 2005. 101–110Google Scholar
  11. 11.
    Ohtake Y, Belyev A, Bogaevski I A. Polyhedral surface smoothing with simultaneous mesh regularization. In: Martin R, Wang W, eds. Geometric Modeling and Processing 2000: Theory and Applications. Los Alamitos: IEEE Computer Society, 2000. 229–237CrossRefGoogle Scholar
  12. 12.
    Yoshizawa S, Belyaev A G. Fair triangle mesh generations via discrete elastica. In: Suzuki H, Martin R, eds. Geometric Modeling and Processing: Theory and Applications. Los Alamitos: IEEE Computer Society, 2002. 119–123CrossRefGoogle Scholar
  13. 13.
    Bajaj C L, Xu G. Anisotropic diffusion of surfaces and functions on surfaces. ACM Trans Graph, 2003, 22(1): 4–32CrossRefGoogle Scholar
  14. 14.
    Clarenz U, Diewald U, Rumpf M. Anisotropic geometric diffusion in surface processing. In: Proceedings of IEEE Visualization 2000. Los Alamitos: IEEE Computer Society, 2000. 397–406Google Scholar
  15. 15.
    Hilderbrandt K, Polthier K. Anisotropic filtering of non-linear surface features. Comput Graph Forum, 2004, 23(3): 391–400CrossRefGoogle Scholar
  16. 16.
    Ohtake Y, Belyaev A, Seidel H P. Mesh smoothing by adaptive and anisotropic Gaussian filter applied to mesh normals. In: Greine G, Niemann H, Ertl T, et al., eds. Vision, Modeling, and Visualization 2002. Amsterdam: IOS press, 2002. 203–210Google Scholar
  17. 17.
    Tasdizen T, Whitaker R, Burchard P, et al. Geometric surface smoothing via anisotropic diffusion of normals. In: Proceedings of IEEE Visualization 2002. Los Alamitos: IEEE Computer Society, 2002. 125–132CrossRefGoogle Scholar
  18. 18.
    Yagou H, Ohtake Y, Belyaev A. Mesh smoothing via mean and median filtering applied to face normals. In: Suzuki H, Martin R, eds. Geometric Modeling and Processing: Theory and Applications. Los Alamitos: IEEE Computer Society, 2002. 124–131CrossRefGoogle Scholar
  19. 19.
    Welch W, Witkin A. Free-form shape design using triangulated surfaces. In: Proceedings of Siggraph 94. New York: Association for ComputingMachinery, 1994. 157–166Google Scholar
  20. 20.
    Kobbelt L. Discrete fairing. In: Goodman T, Martin R, eds. The Mathematics of Surfaces VII. Winchester: Information Geometers, 1997. 101–131Google Scholar
  21. 21.
    Kobbelt L, Campagna S, Vorsatz J, et al. Interactive multi-resolution modeling on arbitrary meshes. In: Proceedings of the SIGGRAPH 98. New York: Association for Computing Machinery, 1998. 105–114CrossRefGoogle Scholar
  22. 22.
    Schneider R, Kobbelt L. Generating fair meshes with G1 boundary conditions. In: Martin R, Wang W, eds. Geometric Modeling and Processing 2000: Theory and Applications. Los Alamitos: IEEE Computer Society, 2000. 251–261CrossRefGoogle Scholar
  23. 23.
    Schneider R, Kobbelt L. Geometric fairing of irregularmeshes for free-form surface design. Comput Aid Geom Des, 2001, 18(4): 359–379MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Xu G, Pan Q, Bajaj C. Discrete surface modelling using partial differential equations. Comput Aid Geom Des, 2006, 23(2): 125–145MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Beier K P, Chen Y. Highlight-line algorithm for realtime surface-quality assessment. Comput Aid Des, 1994, 26(4): 268–277MATHCrossRefGoogle Scholar
  26. 26.
    Yong J H, Cheng F. Geometric Hermite curves with minimum strain energy. Comput Aid Geom Des, 2004, 21(3): 281–301MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Chen Y, Beier K P, Papageorgiou D. Direct highlight line modification on NURBS surfaces. Comput Aid Geom Des, 1997, 14(6): 583–601MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Yong J H, Cheng F, Chen Y, et al. Dynamic highlight line generation for locally deforming NURBS surfaces. Comput Aid Des, 2003, 35(10): 881–892CrossRefGoogle Scholar
  29. 29.
    Cormen T, Leiserson C, Rivest R, et al. Introduction to Algorithms. 2nd ed. Cambridge: MIT Press, 2003. 41–51Google Scholar
  30. 30.
    Willmore T J. Riemannian Geometry. New York: Oxford University Press, 1993. 201–268MATHGoogle Scholar
  31. 31.
    Meyer M, Desbrun M, Schröder P, et al. Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege H C, Polthier K, eds. Visualization and Mathematics III. New York: Springer-Verlag, 2003. 35–57Google Scholar
  32. 32.
    Nocedal J, Wright S. Numerical Optimization. New York: Springer, 1999. 455–473MATHCrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • JunHai Yong
    • 1
    • 4
    • 5
  • BaiLin Deng
    • 1
    • 2
    • 4
    • 5
  • FuHua Cheng
    • 3
  • Bin Wang
    • 1
    • 4
    • 5
  • Kun Wu
    • 1
    • 2
    • 4
    • 5
  • HeJin Gu
    • 6
  1. 1.School of SoftwareTsinghua UniversityBeijingChina
  2. 2.Department of Computer Science and TechnologyTsinghua UniversityBeijingChina
  3. 3.Department of Computer ScienceUniversity of KentuckyLexingtonUSA
  4. 4.Key Laboratory for Information System SecurityMinistry of Education of ChinaBeijingChina
  5. 5.Tsinghua National Laboratory for Information Science and TechnologyBeijingChina
  6. 6.Jiangxi Academy of SciencesNanchangChina

Personalised recommendations