Advertisement

Time-varying clustering for local lighting and material design

  • PeiJie Huang
  • YuanTing Gu
  • XiaoLong Wu
  • YanYun Chen
  • EnHua Wu
Article

Abstract

This paper presents an interactive graphics processing unit (GPU)-based relighting system in which local lighting condition, surface materials and viewing direction can all be changed on the fly. To support these changes, we simulate the lighting transportation process at run time, which is normally impractical for interactive use due to its huge computational burden. We greatly alleviate this burden by a hierarchical structure named a transportation tree that clusters similar emitting samples together within a perceptually acceptable error bound. Furthermore, by exploiting the coherence in time as well as in space, we incrementally adjust the clusters rather than computing them from scratch in each frame. With a pre-computed visibility map, we are able to efficiently estimate the indirect illumination in parallel on graphics hardware, by simply summing up the radiance shoots from cluster representatives, plus a small number of operations of merging and splitting on clusters. With relighting based on the time-varying clusters, interactive update of global illumination effects with multi-bounced indirect lighting is demonstrated in applications to material animation and scene decoration.

Keywords

photorealistic image synthesis global illumination lighting design material design time-varying clustering local lighting GPU 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sloan P P, Kautz J, Snyder J. Pre-computed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans Graph, 2002, 21(3): 527–536CrossRefGoogle Scholar
  2. 2.
    Kristensen A W, Moller T A, Jensen H W. Precomputed local radiance transfer for real-time lighting design. ACM Trans Graph, 2005, 24(3): 1208–1215CrossRefGoogle Scholar
  3. 3.
    Kontkanen J, Turquin E, Holzschuch N, et al. Wavelet radiance transport for interactive indirect lighting. In: Tomas A-M, Wolfgang H, eds. Rendering Techniques. Massachusetts: A K Peters Ltd, 2006. 161–171Google Scholar
  4. 4.
    Sun X, Zhou K, Chen Y, et al. Interactive relighting with dynamic BRDFs. ACM Trans Graph, 2007, 26(3): 27CrossRefGoogle Scholar
  5. 5.
    Akerlund O, Unger M, Wang R. Precomputed visibility cuts for interactive relighting with dynamic BRDFs. In: Alexa M, Gortler S J, Ju T, eds. Proceeding of Pacific Conference on Computer Graphics and Applications. Washington: IEEE Computer Society, 2007. 161–170Google Scholar
  6. 6.
    Kajiya J T. The rendering equation. J Comput Graph, 1986, 20(4): 143–150CrossRefGoogle Scholar
  7. 7.
    Hanrahan P S, Salzman D B. A rapid hierarchical radiosity algorithm. J Comput Graph, 1991, 25(4): 197–206CrossRefGoogle Scholar
  8. 8.
    Walter B, Fernandez S, Arbree A, et al. Lightcuts: Ascalable approach to illumination. ACM Trans Graph, 2005, 24(3): 1098–1107CrossRefGoogle Scholar
  9. 9.
    Goral C, Torrance K, Greenberg D, et al. Modeling the interaction of light between diffuse surfaces. ACM SIGGRAPH Comput Graph, 1984, 18(3): 213–222CrossRefGoogle Scholar
  10. 10.
    Cohen M F, Chen S E, Wallace J R, et al. A progressive refinement approach to fast radiosity image generation. ACM SIGGRAPH Comput Graph, 1988, 22(4): 75–84CrossRefGoogle Scholar
  11. 11.
    Chen S E. Incremental radiosity: An extension of progressive radiosity to an interactive image synthesis system. ACM SIGGRAPH Comput Graph, 1990, 24(4): 135–144CrossRefGoogle Scholar
  12. 12.
    Ward G, Rubinstein F, Clear R. A ray tracing solution for diffuse interreflection. ACM SIGGRAPH Comput Graph, 1988, 22(3): 85–92CrossRefGoogle Scholar
  13. 13.
    Ben-Artzi A, Overbeck R, Ramamoorthi R. Real-time BRDF editing in complex lighting. ACM Trans Graph, 2006, 25(3): 945–954CrossRefGoogle Scholar
  14. 14.
    Jensen H W. Global illumination using photon maps. In: Pueyo X, Schröder P, eds. Rendering Techniques’96. New York: Springer, 1996. 21–30Google Scholar
  15. 15.
    Huang P J, Wang W C, Yang G, et al. Traversal fields for ray tracing dynamic scenes. In: Slater M, Tal A, et al., eds. Proceedings of the ACM Symposium on VRST. New York: ACM Press, 2006. 65–74Google Scholar
  16. 16.
    Huang P J, Wang W C, Yang G, et al. Accelerating ray-tracing using proxy polygons (in Chinese). Chin J Comput, 2006, 30(2): 262–271Google Scholar
  17. 17.
    Ng R, Ramamoorthi R, Hanrahan P. All-frequency shadows using non-linear wavelet lighting approximation. ACM Trans Graph, 2003, 22(3): 376–381CrossRefGoogle Scholar
  18. 18.
    Liu X, Sloan P, Shum H -Y, et al. All-frequency precomputed radiance transfer for glossy objects. In: Alexander K, Jensen H W, eds. Proceeding of the Eurographics Symposium on Rendering 2004. Aire-la-Ville: Eurographics Association, 2004. 337–344Google Scholar
  19. 19.
    Wang R, Tran J, Luebke D. All-Frequency relighting of non-diffuse objects using separable BRDF approximation. In: Jensen H W, ed. Proceeding of the Eurographics Symposium on Rendering 2004. Aire-la-Ville: Eurographics Association, 2004. 345–354Google Scholar
  20. 20.
    Annen T, Kautz J, Durand F, et al. Spherical harmonic gradients for mid-range illumination. In: Alexander K, Jensen H W, eds. Proceeding of the Eurographics Symposium on Rendering 2004. Aire-la-Ville: Eurographics Association, 2004. 331–336Google Scholar
  21. 21.
    Sloan P P, Luna B, Snyder J. Local, deformable precomputed radiance transfer. ACM Trans Graph, 2005, 24(3): 1216–1224CrossRefGoogle Scholar
  22. 22.
    Szecsi L, Kalos L S, Sbert M. Light animation with precomputed light paths on the GPU. In: Gutwin C, Mann S, eds. Proceedings of Graphics Interface 2006. Toronto: Canadian Information Processing Society Toronto, 2006. 187–194Google Scholar
  23. 23.
    Christensen P H, Lischinski D, Stollnitz E J, et al. Clustering for glossy global illumination. ACM Trans Graph, 1997, 16(1): 3–33CrossRefGoogle Scholar
  24. 24.
    Castro F, Sbert M, Neumann L. Fast multipath radiosity using hierarchical subscenes. Comput Graph Forum, 2004, 23(1): 43–53CrossRefGoogle Scholar
  25. 25.
    Loscos C, Drettakis G, Robert L. Interactive virtual relighting of real scenes. IEEE Trans Visual Comput Graph, 2000, 6(3): 289–305CrossRefGoogle Scholar
  26. 26.
    Bekaert P, Neumann L, Neumann A, et al. Hierarchical Monte Carlo Radiosity. In: Drettakis G, Max N L, eds. Rendering Techniques 1998. Austria: Springer, 1998. 259–268Google Scholar
  27. 27.
    Carré S, Deniel J M, Guillou E, et al. Handling dynamic changes in hierarchical radiosity through interaction meshes. In: Barsky B A, Shinagawa Y, Wang W, et al., eds. The Eighth Pacific Conference on Computer Graphics and Applications. Washington: IEEE Computer Society, 2000. 40–51CrossRefGoogle Scholar
  28. 28.
    Smits B, Arvo J, Greenberg D. A clustering algorithm for radiosity in complex environments. In: Schweitzer D, Glassner A, Keeler M, eds. Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1994. 435–442CrossRefGoogle Scholar
  29. 29.
    Drettakis G, Sillion F. Interactive update of global illumination using a line-space hierarchy. In: Owen G S, Whitted T, Mones-Hattal B, eds. Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1997. 57–64CrossRefGoogle Scholar
  30. 30.
    Brian E S, James R, Arvo R, et al. An importance driven radiosity algorithm. ACM SIGGRAPH Comput Graph, 1992, 26(2): 273–282CrossRefGoogle Scholar
  31. 31.
    Sillion F, Drettakis G, Soler C. A clustering algorithm for radiance calculation in general environments. In: Hanrahan P, Purgathofer W, eds. Rendering Techniques ′95, New York: Springer-Verlag, 1995. 196–205Google Scholar
  32. 32.
    Schröder P, Gortler S J, Cohen M, et al. Wavelet radiosity. In: Whitton M C, ed. Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1993. 221–230Google Scholar
  33. 33.
    Christensen P H, Stollnitz E J, DeRose T D, et al. Wavelet radiance. In: Sakas G, Shirley P, Muiller S, eds. Photorealistic Rendering Techniques. Berlin: Springer-Verlag, 1995. 295–309Google Scholar
  34. 34.
    Damez C, Holzschuch N, Sillion F. Space-time hierarchical radiosity with clustering and higher-order wavelets. Comput Graph Forum, 2001, 23(2): 35–42Google Scholar
  35. 35.
    Sbert M, Szécsi L, Szirmay-Kalos L. Real-time light animations. Computer Graphics Forum, 2004, 23(3): 291–299CrossRefGoogle Scholar
  36. 36.
    Overbeck R, Ben-Artzi A, Ramamoorthi R, et al. Exploiting temporal coherence for incremental all-frequency relighting. In: Akenine-Möller T, Heidrich W, eds. Eurographics Symposium on Rendering 2006. Aire-la-Ville: Eurographics Association, 2006. 151–160Google Scholar
  37. 37.
    Jensen H W. Realistic Image Synthesis Using Photon Mapping. Massachusetts: AK Peters Ltd., 2003. 1–600Google Scholar
  38. 38.
    Ahuja R K, Magnanti T L, Orlin J B. Network flows theory algorithms and applications. United States Ed edition. New Jersey: Prentice Hall, 1993. 1–700Google Scholar
  39. 39.
    Segovia B, Iehl J C, Mitanchey Rand, et al. Bidirectional instant radiosity. In: Akenine-Möller T, Heidrich W, eds. Eurographics Symposium on Rendering 2006. Aire-la-Ville: Eurographics Association, 2006. 151–160Google Scholar
  40. 40.
    Blackwell H R. Luminance difference thresholds. Handbook of Sensory Physiology, vol. VII/4: Visual Psychophysics. New York: Springer-Verlag, 1972. 78–101Google Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • PeiJie Huang
    • 1
    • 2
  • YuanTing Gu
    • 1
    • 2
  • XiaoLong Wu
    • 1
    • 2
  • YanYun Chen
    • 3
  • EnHua Wu
    • 1
    • 2
    • 4
  1. 1.State Key Lab of Computer Science, Institute of SoftwareChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina
  3. 3.Autodesk, Inc.ShanghaiChina
  4. 4.Department of Computer and Information ScienceUniversity of MacauMacaoChina

Personalised recommendations