SKY: efficient peer-to-peer networks based on distributed Kautz graphs



Many proposed P2P networks are based on traditional interconnection topologies. Given a static topology, the maintenance mechanism for node join/departure is critical to designing an efficient P2P network. Kautz graphs have many good properties such as constant degree, low congestion and optimal diameter. Due to the complexity in topology maintenance, however, to date there have been no effective P2P networks that are proposed based on Kautz graphs with base > 2. To address this problem, this paper presents the “distributed Kautz (D-Kautz) graphs”, which adapt Kautz graphs to the characteristics of P2P networks. Using the D-Kautz graphs we further propose SKY, the first effective P2P network based on Kautz graphs with arbitrary base. The effectiveness of SKY is demonstrated through analysis and simulations.


peer-to-peer network Kautz graph constant degree topology maintenance D-Kautz graph 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li D S, Cao J N, Chan K C C, et al. Delay-bounded range queries in DHT-based peer-to-peer systems. In: ICDCS 2006. Lisboa: IEEE Press, 2006Google Scholar
  2. 2.
    Zhang Y M, Li D S, Chu R, et al. PIBUS: A network memorybased peer-to-peer IO buffering service. In: Networking 2007, LNCS4479. Atlanta: Springer-Verlag, 2007. 1237–1240Google Scholar
  3. 3.
    Zhang Y M, Li D S. Lu X C. Scalable distributed resource information service for internet-based virtual computing environment (in Chinese). J Software, 2007, 18(8): 1933–1942CrossRefGoogle Scholar
  4. 4.
    Dabek F, Kaashoek M F, Karger D, et al. Wide-area cooperative storage with CFS. In: SOSP 2001. Banff: ACM Press, 2001. 202–215CrossRefGoogle Scholar
  5. 5.
    Cox R, Muthitacharoen A, Morris R T. Serving DNS using a peer-to-peer lookup service. In: IPTPS 2002, LNCS2429. Cambridge: Springer-Verlag, 2002. 155–165Google Scholar
  6. 6.
    Annapureddy S, Freedman M J, Mazi’eres D. Shark: Scaling file servers via cooperative caching. In: NSDI 2005. Boston: USENIX Press, 2005. 129–142Google Scholar
  7. 7.
    Stoica I, Morris R, Karger D R, et al. Chord: A scalable peerto-peer lookup service for Internet applications. IEEE/ACM Trans Netw, 2003, 11(1): 17–32CrossRefGoogle Scholar
  8. 8.
    Rowstron A, Druschel P. Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Middleware 2001, LNCS2218. Heidelberg: Springer-Verlag, 2001. 329–350CrossRefGoogle Scholar
  9. 9.
    Zhao B Y, Huang L, Stribling J. Tapestry: A resilient globalscale overlay for service deployment. IEEE JSAC, 2004, 22(1): 41–53Google Scholar
  10. 10.
    Maymounkov P, Mazieres D. Kademlia: A peer-to-peer information system based on the xor metric. In: IPTPS, LNCS2429. Cambridge: Springer-Verlag, 2002. 53–65Google Scholar
  11. 11.
    Harvey N J A, Jones M B, Saroiu S, et al. Skipnet: A scalable overlay network with practical locality properties. In: USITS 2003. Seattle: USENIX Press, 2003Google Scholar
  12. 12.
    Ratnasamy S, Francis P, Handley M, et al. A scalable content addressable network. In: SIGCOMM 2001. San Diego: ACM Press, 2001. 161–172CrossRefGoogle Scholar
  13. 13.
    Malkhi D, Naor M, Ratajczak D. Viceroy: A scalable and dynamic emulation of the butterfly. In: PODC 2002. Monterey: ACM Press, 2002. 183–192CrossRefGoogle Scholar
  14. 14.
    Kumar A, Merugu S, Xu J J, et al. Ulysses: A robust, lowdiameter, low-latency peer-to-peer network. In: ICNP 2003. Atlanta: IEEE Press, 2003. 258–267Google Scholar
  15. 15.
    Shen H, Xu C, Chen G. Cycloid: A scalable constant-degree P2P overlay network. Perform Eval, 2005, 63(3): 195–216Google Scholar
  16. 16.
    Fraigniaud P, Gauron P. D2B: A de Bruijn based contentaddressable network. Theor Comput Sci, 2006, 355(1): 65–79MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kaashoek F, Karger D. Koorde: A simple degree-optimal distributed hash table. In: IPTPS 2003, LNCS2735. Berkeley: Springer-Verlag, 2003. 98–107Google Scholar
  18. 18.
    Loguinov D, Kumar A, Rai V, et al. Graph-theoretic analysis of structured peer-to-peer systems: Routing distances and fault resilience. In: SIGCOMM 2003. Karlsruhe: ACM Press, 2003. 395–406CrossRefGoogle Scholar
  19. 19.
    Gai A T, Viennot L. Broose: A practical distributed hash table based on the de Bruijn topology. In: International Conference on Peer-to-Peer Computing 2004. Switzerland: IEEE Press, 2004. 167–174Google Scholar
  20. 20.
    Li D S, Lu X C. A novel constant degree and constant congestion DHT scheme for peer-to-peer networks. Sci China Ser F-Inf Sci, 2005, 48(4): 421–436MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Guo D K, Wu J, Chen H H, et al. Moore: an extendable peerto-peer network based on incomplete Kautz digraph with constant degree. In: INFOCOM 2007. Anchorage: IEEE Press, 2007. 821–829CrossRefGoogle Scholar
  22. 22.
    Fiol M A, Llado A S. The partial line digraph technique in the design of large interconnection networks. IEEE Trans Comput, 1992, C-41(7): 848–857CrossRefMathSciNetGoogle Scholar
  23. 23.
    Tvrdik P. Factoring and scaling Kautz digraphs. Technical Report LIP ENSL 94-15. 1994Google Scholar
  24. 24.
    Lu X C, Wang H M, Wang J. Internet-based virtual computing environment (iVCE): Concepts and architecture. Sci China Ser F-Inf Sci, 2006, 49(6): 681–701CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.National Laboratory for Parallel and Distributed ProcessingNational University of Defense TechnologyChangshaChina

Personalised recommendations