Advertisement

Science in China Series F: Information Sciences

, Volume 51, Issue 9, pp 1340–1348 | Cite as

Joint diagonalization DOA matrix method

  • TieQi Xia
  • XueGang Wang
  • Yi Zheng
  • Qun Wan
Article

Abstract

A novel joint diagonalization (DOA) matrix method is proposed to estimate the two-dimensional (2-D) DOAs of uncorrelated narrowband signals. The method constructs three subarrays by exploiting the special structure of the array, thereby obtaining the 2-D DOAs of the array based on joint diagonalization directly with neither peak search nor pair matching. The new method can handle sources with common 1-D angles. Simulation results show the effectiveness of the method.

Keywords

antenna array DOA joint diagonalization pair matching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chan A Y J, Litva J. MUSIC and maximum likelihood techniques on two-dimensional DOA estimation with uniform circular array. IEE P-Radar Son Nav, 1995, 3(142): 105–114CrossRefGoogle Scholar
  2. 2.
    Kedia V S, Chandna B. A new algorithm for 2-D DOA estimation. Signal Process, 1997, 60(3): 325–332zbMATHCrossRefGoogle Scholar
  3. 3.
    van der Veen A J, Ober P B, Deprettere E F. Azimuth and elevation computation in high resolution DOA estimation. IEEE Trans Signal Process, 1992, 7(40): 1828–1832CrossRefGoogle Scholar
  4. 4.
    Yin Q Y, Zou L H, Newcomb R. A high resolution approach to 2-D signal parameter estimation—DOA matrix method, J China Inst Commun (in Chinese), 1991, 4(12): 1–6Google Scholar
  5. 5.
    Yin Q Y, Newcomb R, Zou L. Estimating 2-D angle of arrival via two parallel linear arrays. In: Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing. Glasgow: IEEE, 1989. 2803–2806Google Scholar
  6. 6.
    Yin Q Y. High resolution direction of arrival estimation. Doctor dissertation (in Chinese). Xi’an: Xi’an Jiao Tong University, 1989Google Scholar
  7. 7.
    Jin L, Yin Q Y. Space-time DOA matrix method. Acta Electron Sin (in Chinese), 2000, 7(28): 8–12Google Scholar
  8. 8.
    Jin L, Yin Q Y. Analysis and generalization of space-time DOA matrix method. Acta Electron Sin (in Chinese), 2001, 3(39): 300–303Google Scholar
  9. 9.
    Zoltowski M D, Haardt M, Mathews C P. Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT. IEEE Trans Signal Process, 1996, 2(44): 316–322CrossRefGoogle Scholar
  10. 10.
    Si D, Le Q, Shen S, Zhou Y. Closed-form 2-D angle estimation via 2-D unitary ESPRIT with uniform centro-symmetric array. Acta Electron Sin (in Chinese), 1999, 3(27): 67–70Google Scholar
  11. 11.
    Belouchrani A, Abed-Meraim K, Cardoso J F, et al. A blind source separation technique using second-order statistics. IEEE Trans Signal Process, 1997, 2(45): 434–444CrossRefGoogle Scholar
  12. 12.
    Roy R, Kailath T. ESPRIT—estimation of signal parameters via rotational invariance techniques. IEEE Trans Acoust Speech Signal Process, 1989, 7(37): 984–995CrossRefGoogle Scholar
  13. 13.
    Marcos S, Marsal A, Benidir M. The propagator method for source bearing estimation. Signal Process, 1995, (42): 121–138Google Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.College of Electronic EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations