Research progress on discretization of fractional Fourier transform

Article

Abstract

As the fractional Fourier transform has attracted a considerable amount of attention in the area of optics and signal processing, the discretization of the fractional Fourier transform becomes vital for the application of the fractional Fourier transform. Since the discretization of the fractional Fourier transform cannot be obtained by directly sampling in time domain and the fractional Fourier domain, the discretization of the fractional Fourier transform has been investigated recently. A summary of discretizations of the fractional Fourier transform developed in the last nearly two decades is presented in this paper. The discretizations include sampling in the fractional Fourier domain, discrete-time fractional Fourier transform, fractional Fourier series, discrete fractional Fourier transform (including 3 main types: linear combination-type; sampling-type; and eigen decomposition-type), and other discrete fractional signal transform. It is hoped to offer a doorstep for the readers who are interested in the fractional Fourier transform.

Keywords

fractional Fourier transform sampling in the fractional Fourier domain discrete-time fractional Fourier transform fractional Fourier series discrete fractional Fourier transform 

References

  1. 1.
    Almeida L B. The fractional Fourier transform and time-frequency representations. IEEE Trans Signal Process, 1994, 42: 3084–3091CrossRefGoogle Scholar
  2. 2.
    Ozaktas H M, Zalevsky Z, Kutay M A. The Fractional Fourier Transform with Applications in Optics and Signal Processing. New York: Wiley, 2000. 1–513Google Scholar
  3. 3.
    Namias V. The fractional order Fourier transform and its application to quantum mechanics. J Inst Math Appl, 1980, 25: 241–265MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Tao R, Deng B, Wang Y. Research progress of the fractional Fourier in signal processing. Sci China Ser F-Inf Sci, 2006, 49(1): 1–25MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Tao R, Qi L, Wang Y. Theory and Application of the Fractional Fourier Transform (in Chinese). Beijing: Tsinghua University Press, 2004. 23–49Google Scholar
  6. 6.
    Zayed A I. On the relationship between the Fourier transform and fractional Fourier transform. IEEE Signal Process Lett, 1996, 3: 310–311CrossRefGoogle Scholar
  7. 7.
    Lohmann A W. Image rotation, Wigner rotation, and the fractional Fourier transform. J Opt Soc Amer A, 1993, 10: 2181–2186Google Scholar
  8. 8.
    Ozaktas H M, Barshan B, Mendlovic D, et al. Convolution, filtering, and multiplexing in fractional Fourier domains and their relationship to chirp and wavelet transform. J Opt Soc Amer A, 1994, 11: 547–559MathSciNetGoogle Scholar
  9. 9.
    Lohmann A W, Soffer B H. Relationship between the Radon-Wigner and the fractional Fourier transform. J Opt Soc Amer A, 1994, 11:1798–1801MathSciNetGoogle Scholar
  10. 10.
    Mustard D A. The fractional Fourier transform and the Wigner distribution. J Aust Math Soc B, 1996, 38: 209–219MATHMathSciNetGoogle Scholar
  11. 11.
    Pei S C, Ding J J. Relations between fractional operations and time-frequency distributions, and their applications. IEEE Trans Signal Process, 2001, 49: 1638–1655CrossRefMathSciNetGoogle Scholar
  12. 12.
    Candan C, Kutay M A, Ozaktas H M. The discrete fractional Fourier transform. IEEE Trans Signal Process, 2000, 48: 1329–1337MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ozaktas H M, Aytur O. Fractional Fourier domains. Signal Process, 1995, 46: 119–124MATHCrossRefGoogle Scholar
  14. 14.
    Kraniauskas P, Cariolaro G, Erseghe T. Method for defining a class of fractional operations. IEEE Trans Signal Process, 1998, 46: 2804–2807MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Cariolaro G, Erseghe T, Kraniauskas P, et al. A unified framework for the fractional Fourier transform. IEEE Trans Signal Process, 1998, 46: 3206–3219MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Almeida L B. Product and convolution theorems for the fractional Fourier transform. IEEE Signal Process Lett, 1997, 4: 15–17Google Scholar
  17. 17.
    Zayed A I. A convolution and product theorem for the fractional Fourier transform. IEEE Signal Process Lett, 1998, 5: 101–103CrossRefGoogle Scholar
  18. 18.
    Xia X. On bandlimited signals with fractional Fourier transform. IEEE Signal Process Lett, 1996, 3: 72–74CrossRefGoogle Scholar
  19. 19.
    Erseghe T, Kraniauskas P, Cariolaro G. Unified fractional Fourier transform and sampling theorem. IEEE Trans Signal Process, 1999, 47: 3419–3423MATHCrossRefGoogle Scholar
  20. 20.
    Pei S C, Ding J J. Simplified fractional Fourier transforms. J Opt Soc Amer A, 2000, 17: 2355–2367CrossRefMathSciNetGoogle Scholar
  21. 21.
    Erden M F, Kutay M A, Ozaktas H M. Repeated filtering in consecutive fractional Fourier domains and its application to signal restoration. IEEE Trans Signal Process, 1999, 47: 1458–1462CrossRefGoogle Scholar
  22. 22.
    Zalevsky Z, Mendlovic K. Fractional Wiener filter. Appl Opt, 1996, 35: 3930–3936CrossRefGoogle Scholar
  23. 23.
    Kutay M A, Ozaktas H M, Arikan O, et al. Optimal image restoration with the fractional Fourier transform. J Opt Soc Amer A, 1998, 15: 825–833CrossRefGoogle Scholar
  24. 24.
    Erden M F, Ozaktas H M. Synthesis of general linear systems with repeated filtering in consecutive fractional Fourier domains. J Opt Soc Amer A, 1998, 15: 1647–1657CrossRefGoogle Scholar
  25. 25.
    Ozaktas H M, Arikan O, Kutay M A, et al. Digital computation of the fractional Fourier transform. IEEE Trans Signal Process, 1996, 44: 2141–2150CrossRefGoogle Scholar
  26. 26.
    Ozaktas H M, Mendlovic D. Fractional Fourier optics. J Opt Soc Amer A, 1995, 12: 743–751MathSciNetGoogle Scholar
  27. 27.
    McBride A C, Kerr F H. On Namias’ fractional Fourier transforms. IMA J Appl Math, 1987, 39: 159–175MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Mendlovic D, Ozaktas H M, Lohmann A W. Fractional correlation. Appl Opt, 1995, 34: 303–309Google Scholar
  29. 29.
    Candan C, Ozaktas H M. Sampling and series expansion theorems for fractional Fourier and other transforms. Signal Process, 2003, 83: 2455–2457CrossRefMATHGoogle Scholar
  30. 30.
    Zayed A I, Garcia A G. New Sampling formulae for the fractional Fourier transform. Signal Process, 1999, 77: 111–114MATHCrossRefGoogle Scholar
  31. 31.
    Sharma K K, Joshi S D. Fractional Fourier transform of bandlimited periodic signals and its sampling theorem. Opt Commun, 2005, 256: 272–278CrossRefGoogle Scholar
  32. 32.
    Sharma K K, Joshi S D. On scaling properties of fractional Fourier transform and its relation with other transforms. Optics Commun, 2006, 257: 27–38CrossRefGoogle Scholar
  33. 33.
    Torres R, Pellat-Finet P, Torres Y. Sampling theorem for fractional bandlimited signals: a self-contained proof. Application to digital holography. IEEE Signal Process Lett, 2006, 13: 676–679CrossRefGoogle Scholar
  34. 34.
    Zhang W Q, Tao R. Sampling theorems for bandpass signals with fractional Fourier transform(in Chinese). Acta Electron Sin, 2005, 33(7): 1196–1199Google Scholar
  35. 35.
    Pei S C, Yeh M H, Luo T L. Fractional Fourier series expansion for finite signals and dual extension to discrete-time fractional Fourier transform. IEEE Trans Signal Process, 1999, 47: 2883–2888MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Barkat B, Yinguo J. A modified fractional Fourier series for the analysis of finite chirp signals & its application. In: IEEE the 7th International Symposium on Signal Processing and Its Application. New York: IEEE Press, 2003, 1: 285–288CrossRefGoogle Scholar
  37. 37.
    Alieva T, Barbe A. Fractional Fourier and Radon-Wigner transforms of periodic signals. Signal Process, 1998, 69: 183–189MATHCrossRefGoogle Scholar
  38. 38.
    Dickinson B W, Steiglitz K. Eigenvectors and functions of the discrete Fourier transform. IEEE Trans Acoust Speech Signal Process, 1982, ASSP-30: 25–31CrossRefMathSciNetGoogle Scholar
  39. 39.
    Santhanam B, McClellan J H. The DRFT—a rotation in time-frequency space. In: Proc IEEE Int Conf Acoustics Speech Signal Process. New York: IEEE Press, 1995. 921–924Google Scholar
  40. 40.
    Santhanam B, McClellan J H. The discrete rotational Fourier transform. IEEE Trans Signal Process, 1996, 42: 994–998CrossRefGoogle Scholar
  41. 41.
    Cariolaro G, Erseghe T, Kraniauskas P, et al. Multiplicity of fractional Fourier transforms and their relationships. IEEE Trans Signal Process, 2000, 48: 227–241MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Zhao X H, Tao R, Deng B. Practical normalization methods in the digital computation of the fractional Fourier transform. In: Proc IEEE Int Conf Signal Process. New York: IEEE Press, 2004, 1: 105–108CrossRefGoogle Scholar
  43. 43.
    Bultheel A, Sulbaran H M. Computation of the fractional Fourier transform. Appl Comput Harmon Anal, 2004, 16: 182–202MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Deng X G, Li Y P, Fan D Y, et al. A fast algorithm for fractional Fourier transform. Opt Commun, 1997, 138: 270–274CrossRefGoogle Scholar
  45. 45.
    Pei S C, Ding J J. Closed-form discrete fractional and affine Fourier transforms. IEEE Trans Signal Process, 2000, 48: 1338–1353MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    McClellan J H, Parks T W. Eigenvalue and eigenvector decomposition of the discrete Fourier transform. IEEE Trans Audio Eletroacoustics, 1972, AU-20: 66–74CrossRefMathSciNetGoogle Scholar
  47. 47.
    Pei S C, Yeh M H. Discrete fractional Fourier transform. Proc IEEE Int Symp Circ Syst, 1996. 536–539Google Scholar
  48. 48.
    Pei S C, Yeh M H. Improved discrete fractional Fourier transform. Opt Lett, 1997, 22: 1047–1049CrossRefGoogle Scholar
  49. 49.
    Pei S C, Tseng C C, Yeh M H, et al. Discrete fractional Hartley and Fourier transform. IEEE Trans Circ Syst II, 1998, 45: 665–675MATHCrossRefGoogle Scholar
  50. 50.
    Pei S C, Tseng C C. A new discrete fractional Fourier transform based on constrained eigendecomposition of DFT matrix by Largrange multiplier method. In: Proc IEEE Int Conf Acoustics Speech Signal Process. New York: IEEE Press, 1997. 3965–3968Google Scholar
  51. 51.
    Pei S C, Tseng C C, Yeh M H. A new discrete fractional Fourier transform based on constrained eigendecomposition of DFT matrix by Largrange multiplier method. IEEE Trans Circuits Syst II, 1999, 46: 1240–1245Google Scholar
  52. 52.
    Pei S C, Yeh M H, Tseng C C. Discrete fractional Fourier transform based on orthogonal projections. IEEE Trans Signal Process, 1999, 47: 1335–1348MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Candan C, Kutay M A, Ozaktas H M. The discrete fractional Fourier transform. In: Proc IEEE Int Conf Acoustics Speech Signal Process. New York: IEEE Press, 1999. 1713–1716Google Scholar
  54. 54.
    Hanna M T, Seif N P A, Ahmed W A E M. Hermite-Gaussian-like eigenvectors of the discrete Fourier transform matrix based on the singular value decomposition of its orthogonal projection matrices. IEEE Trans Circ Syst I, 2004, 51: 2245–2254CrossRefMathSciNetGoogle Scholar
  55. 55.
    Hanna M T, Seif N P A, Ahmed W A E M. Hermite-Gaussian-like eigenvectors of the discrete Fourier transform matrix based on the direct utilization of the orthogonal projection matrices on its eigenspaces. IEEE Trans Signal Process, 2006, 54: 2815–2819CrossRefGoogle Scholar
  56. 56.
    Pei S C, Hsue W L, Ding J J. Discrete fractional Fourier transform based on new nearly tridiagonal commuting matrices. Proc IEEE Int Conf Acoustics Speech and Signal Process, 2005. 385–388Google Scholar
  57. 57.
    Pei S C, Hsue W L, Ding J J. Discrete fractional Fourier transform based on new nearly tridiagonal commuting matrices. IEEE Trans Signal Process, 2006, 54: 3815–3828CrossRefGoogle Scholar
  58. 58.
    Candan C. On higher order approximations for Hermite-Gaussian functions and discrete fractional Fourier transforms. IEEE Signal Process Lett, 2007, 14: 699–702CrossRefGoogle Scholar
  59. 59.
    Arikan O, Kutay M A, Ozaktas H M, et al. The discrete fractional Fourier transformation. In: Proc IEEE Int Symp Time-Frequency Time-Scale Anal. New York: IEEE Press, 1996. 205–207CrossRefGoogle Scholar
  60. 60.
    Richman M S, Parks T W. Understanding discrete rotations. In: Proc IEEE Int Conf Acoust Speech Signal Process. New York: IEEE Press, 1997, 3: 2057–2060Google Scholar
  61. 61.
    Zhu B H, Liu S T, Ran Q W. Optical image encryption based on multifractional Fourier transforms. Opt Lett, 2000, 25(16): 1159–1161CrossRefGoogle Scholar
  62. 62.
    Ran Q W, Yeung D S, E. Tsang C C, et al. General multifractional Fourier transform method based on the generalized permutation matrix group. IEEE Trans Signal Process, 2005, 53(1): 83–98CrossRefMathSciNetGoogle Scholar
  63. 63.
    Qi L, Tao R, Zhou S Y, et al. Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform. Sci China Ser F-Inf Sci, 2004, 47(2): 184–198MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Tao R, Li B Z, Wang Y. Spectral analysis and reconstruction for periodic nonuniformly sampled signals in fractional Fourier domain. IEEE Trans Signal Process, 2007, 55(7): 3541–3547CrossRefMathSciNetGoogle Scholar
  65. 65.
    Tao R, Deng B, Zhang W Q, et al. Sampling and sampling rate conversion of band limited signals in the fractional Fourier transform domain. IEEE Trans Signal Process, 2008, 56(1): 158–171CrossRefMathSciNetGoogle Scholar
  66. 66.
    Zhang F, Tao R. Multirate signal processing based on discrete time fractional Fourier transform(in Chinese). Prog Natl Sci, 2008, 18(1): 93–101Google Scholar
  67. 67.
    Pei S C, Hsue W L. The multiple-parameter discrete fractional Fourier transform. IEEE Signal Process Lett, 2006, 13: 329–332CrossRefGoogle Scholar
  68. 68.
    Pei S C, Yeh M H. A novel method for discrete fractional Fourier transform computation. In: Proc IEEE Int Symp Circ Syst. New York: IEEE Press, 2001. 585–588Google Scholar
  69. 69.
    Yeh M H, Pei S C. A method for the discrete fractional Fourier transfor computation. IEEE Trans Signal Process, 2003, 51: 889–891CrossRefMathSciNetGoogle Scholar
  70. 70.
    Hanna M T. On the angular decomposition technique computing the discrete fractional Fourier transform. In: Proc IEEE Int Conf Acoust Speech Signal Process. New York: IEEE Press, 2007. 3988–3991Google Scholar
  71. 71.
    Huang D F, Chen B S. A multi-input-multi-output system approach for the computation of discrete fractional Fourier transform. Signal Process, 2000, 80: 1501–1513CrossRefGoogle Scholar
  72. 72.
    Zhu Y Q, Qi L, Yang S Y, et al. Calculation of discrete fractional Fourier transform based on adaptive LMS algorithm. Proc IEEE Int Conf Signal Process, 2006, 1: 16–20Google Scholar
  73. 73.
    Hanna M T. A discrete fractional Fourier transform based on orthonormalized McClellan-Parks eigevectors. In: Proc IEEE Int Conf Circ Syst. New York: IEEE Press, 2003. 81–84Google Scholar
  74. 74.
    Pei S C, Yeh M H. Two dimensional discrete fractional Fourier transform. Signal Process, 1998, 67: 99–108MATHCrossRefGoogle Scholar
  75. 75.
    Narayanan V A, Prabhu K M M. The fractional Fourier transform: theory, implementation and error analysis. Microprocess Microsy, 2003, 27: 511–521CrossRefGoogle Scholar
  76. 76.
    Pei S C, Yeh M H. Discrete fractional Hadamard transform. In: Pro IEEE Int Symp Circ Syst. New York: IEEE Press, 1999. 179–182Google Scholar
  77. 77.
    Pei S C, Yeh M H. The discrete fractional cosine and sine transforms. IEEE Trans Signal Processing, 2001, 49: 1198–1207CrossRefMathSciNetGoogle Scholar
  78. 78.
    Cariolaro G, Erseghe T, Kraniauskas P. The fractional discrete cosine transform. IEEE Trans Signal Process, 2002, 50: 902–911CrossRefMathSciNetGoogle Scholar
  79. 79.
    Tseng C C. Eigenvalues and eigenvectors of generalized DFT, generalized DHT, DCT-IV and DST-IV matrices. IEEE Trans Signal Process, 2002, 50: 866–877CrossRefMathSciNetGoogle Scholar
  80. 80.
    Pei S C, Ding J J. Generalized eigenvectors and fractionalization of offset DFTs and DCTs. IEEE Trans Signal Process, 2004, 52: 2032–2046CrossRefMathSciNetGoogle Scholar
  81. 81.
    Vargas-Rubio J G, Santhanam B. On the multiangle centered discrete fractional Fourier transform. IEEE Signal Process Lett, 2005, 12: 273–276CrossRefGoogle Scholar
  82. 82.
    Pei S C, Yeh M H. Discrete fractional Hilbert transform. Proc IEEE Int Symp Signal Process, 1998. 506–509Google Scholar
  83. 83.
    Liu Z J, Zhao H F, Liu S T. A discrete fractional random transform. Opt Commu, 2005, 255: 357–365CrossRefGoogle Scholar
  84. 84.
    Yeh M H. Angular decompositions for the discrete fractional signal transforms. In: Proc IEEE Int Symp Circ Syst. New York: IEEE Press, 2003. 93–96Google Scholar
  85. 85.
    Yeh M H. Angular decompositions for the discrete fractional signal transforms. Signal Process, 2005, 85: 537–547CrossRefMATHGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Department of Electronic EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations