Science in China Series F

, Volume 49, Issue 1, pp 1–25 | Cite as

Research progress of the fractional Fourier transform in signal processing

Article

Abstract

The fractional Fourier transform is a generalization of the classical Fourier transform, which is introduced from the mathematic aspect by Namias at first and has many applications in optics quickly. Whereas its potential appears to have remained largely unknown to the signal processing community until 1990s. The fractional Fourier transform can be viewed as the chirp-basis expansion directly from its definition, but essentially it can be interpreted as a rotation in the time-frequency plane, i.e. the unified time-frequency transform. With the order from 0 increasing to 1, the fractional Fourier transform can show the characteristics of the signal changing from the time domain to the frequency domain. In this research paper, the fractional Fourier transform has been comprehensively and systematically treated from the signal processing point of view. Our aim is to provide a course from the definition to the applications of the fractional Fourier transform, especially as a reference and an introduction for researchers and interested readers.

Keywords

fractional Fourier transform signal processing time-frequency analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Namias, V., The fractional order Fourier transform and its application to quantum mechanics, J. Inst. Math. Appl., 1980, 25: 241–265.MATHMathSciNetGoogle Scholar
  2. 2.
    McBride, A. C., Kerr, F. H., On Namias’ fractional Fourier transform, IMA J. Appl. Math., 1987, 39: 159–175.MathSciNetGoogle Scholar
  3. 3.
    Mendlovic, D., Ozaktas, H. M., Fractional Fourier transforms and their optical implementation (I), J. Opt. Sco. AM. A., 1993, 10(10): 1875–1881.Google Scholar
  4. 4.
    Ozaktas, H. M., Mendlovic, D., Fractional Fourier transforms and their optical implementation (II), J. Opt. Sco. AM. A., 1993, 10(12): 2522–2531.Google Scholar
  5. 5.
    Ozaktas, H. M., Kutay, M. A., Zalevsky, Z., The fractional Fourier Transform with Applications in Optics and Signal Processing, New York: John Wiley & Sons, 2000.Google Scholar
  6. 6.
    Tao, R., Qi, L., Wang, Y., Theory and Applications of the Fractional Fourier Transform (in Chinese), Beijing: Tsinghua University Press, 2004.Google Scholar
  7. 7.
    Sun, X. B., Bao, Z., Fractional Fourier transform and its applications, Acta Electronica Sinica (in Chinese), 1996, 24(12): 60–65.Google Scholar
  8. 8.
    Jiang, Z. P., Fourier transform of fractional order, Chinese Journal of Quantum Electronics (in Chinese), 1996, 13(4): 289–300.Google Scholar
  9. 9.
    Almeida, L. B., The fractional Fourier transform and time-frequency representations, IEEE Tran. Signal Processing, 1994, 42(11): 3084–3091.Google Scholar
  10. 10.
    Zayed, A. I., Garcia, A. G., New sampling formulae for the fractional Fourier transform, Signal Processing, 1999, 77: 111–114.CrossRefGoogle Scholar
  11. 11.
    Erseghe, T., Kraniauskas, P., Cariolaro, G., Unified fractional Fourier transform and sampling theorem, IEEE Tran. Signal Processing, 1999, 47(12): 3419–3423.MathSciNetGoogle Scholar
  12. 12.
    Almeida, L. B., Product and convolution theorems for the fractional Fourier transform, IEEE Signal Processing Letters, 1997, 4(1): 15–17.MathSciNetGoogle Scholar
  13. 13.
    Zayed, A. I., A convolution and product theorem for the fractional Fourier transform, IEEE Signal Processing Letters, 1998, 5(4): 101–103.CrossRefMathSciNetGoogle Scholar
  14. 14.
    Lohmann, A. W., Relationships between the Radon-Wigner and fractional Fourier transfoms, J. Opt. Soc. Am. A, 1994, 11(6): 1398–1401.MathSciNetGoogle Scholar
  15. 15.
    Ozaktas, H. M., Erkaya, N., Kutay, M. A., Effect of fractional Fourier transformation on Time-Frequency distributions belonging to the cohen class, IEEE Signal Processing Letters, 1996, 3(2): 40–41.CrossRefGoogle Scholar
  16. 16.
    Ran, Q. W., Shen, Y. Y., Liu, Y. T., The fractional Fourier transform and matrix group and the time-frequency analysis, Signal Processing (in Chinese), 2001, 17(2): 162–167, 129.Google Scholar
  17. 17.
    Ozaktas, H. M., Aytur, O., Fractional Fourier domains, Signal Processing, 1995, 46: 119–124.CrossRefGoogle Scholar
  18. 18.
    Shinde, S., Gadre, V. M., An uncertainty principle for real signals in the fractional Fourier transform domain, IEEE Tran. Signal Processing, 2001, 49(11): 2545–2548.MathSciNetGoogle Scholar
  19. 19.
    Akay, O., Boudreaux-Bartels, G. F., Fractional convolution and correlation via operator methods and an application to detection of linear FM signals, IEEE Tran. Signal Processing, 2001, 49(5): 979–993.Google Scholar
  20. 20.
    Pei, S. C., Ding, J. J., Relations between fractional operations and time-frequency distributions, and their applications, IEEE Tran. Signal Processing, 2001, 49(8): 1638–1655.MathSciNetGoogle Scholar
  21. 21.
    Akay, O., Boudreaux-Bartels, G. F., Unitary and hermitian fractional operators and their relation to the fractional Fourier transform, IEEE Signal Processing Letters, 1998, 5(12): 312–314.CrossRefGoogle Scholar
  22. 22.
    Lohmann, A. W., Mendlovic, D., Zalevsky, Z., Fractional Hilbert transform, Opt. Lett., 1996, 21: 281–283.Google Scholar
  23. 23.
    Pei, S. C., Yeh, M. H., Discrete fractional Hilbert transform, IEEE Tran. Circuits and Systems-II, 2000, 47(11): 1307–1311.Google Scholar
  24. 24.
    Tseng, C. C., Pei, S. C., Design and application of discrete-time fractional Hilbert transformer, IEEE Tran. Circuits and Systems-II, 2000, 47(12): 1529–1533.Google Scholar
  25. 25.
    Pei, S. C., Ding, J. J., Fractional cosine, sine, and Hartley transforms, IEEE Tran. Signal Processing, 2002, 50(7): 1661–1680.MathSciNetGoogle Scholar
  26. 26.
    Wang, K. Z., Wan, S. R., Variable angle fractional Fourier transform and its application in modeling the signal’s time-frequency structure, Journal of Southeast University (Natural Science Edition) (in Chinese), 2001, 31(4): 27–30.MathSciNetGoogle Scholar
  27. 27.
    Chen, Z., Wang, H. Y., Qiu, T. S., The study of ambiguity function based on fractional Fourier transform, Signal Processing (in Chinese), 2003, 19(6): 499–502.Google Scholar
  28. 28.
    Alieva, T., Bastiaans, M. J., On fractional Fourier transform moments, IEEE Signal Processing Letters, 2000, 7(11): 320–323.CrossRefGoogle Scholar
  29. 29.
    Stankovic, L., Alieva, T., Bastiaans, M. J., Time-frequency signal analysis based on the windowed fractional Fourier transform, Signal Processing, 2003, 83: 2459–2468.Google Scholar
  30. 30.
    Stankovic, L., A method for time-frequency analysis, IEEE Tran. Signal Processing, 1994, 42(1): 225–229.Google Scholar
  31. 31.
    Zhang, F., Bi, G. A., Chen, Y. Q., Tomography time-frequency transform, IEEE Tran. Signal Processing, 2002, 50(6): 1289–1297.MathSciNetGoogle Scholar
  32. 32.
    Chen, G. H., Ma, S. W., Cao, J. L. et al., Adaptive time-frequency representation based on fractinal Fourier transform, Systems Engineering and Electronics (in Chinese), 2001, 23(4): 69–71.Google Scholar
  33. 33.
    Xia, X. G., Owechko, Y., Soffer, B. H. et al., On generalized-marginal time-frequency distributions, IEEE Tran. Signal Processing, 1996, 44(11): 2882–2886.Google Scholar
  34. 34.
    Zhang, W. Q., Tao, R., Sampling theorems for bandpass signals with fractional Fourier transform, Acta Electronica Sinica (in Chinese), 2005, 33(7): 1196–1199.Google Scholar
  35. 35.
    Pei, S. C., Yeh, M. H., Tseng, C. C., Discrete fractional Fourier transform based on orthogonal projections, IEEE Tran. Signal Processing, 1999, 47(5): 1335–1348.MathSciNetGoogle Scholar
  36. 36.
    Candan, C., Kutay, M. A., Ozaktas, H. M., The discrete fractional Fourier transform, IEEE Tran. Signal Processing, 2000, 48(5): 1329–1337.MathSciNetGoogle Scholar
  37. 37.
    Ping, X. J., Tao, R., Zhou, S. Y. et al., A novel fast algorithm for fractional Fourier transform, Acta Electronica Sinica (in Chinese), 2001, 29(3): 406–408.Google Scholar
  38. 38.
    Ozaktas, H. M., Arikan, O., Kufay, M. A. et al., Digital computation of the fractional Fourier transform, IEEE Tran. Signal Processing, 1996, 44(9): 2141–2150.Google Scholar
  39. 39.
    Bultheel, A., Sulbaran, H. E. M., Computation of the fractional Fourier transform, Applied and Computational Harmonic Analysis, 2004, 16: 182–202.CrossRefMathSciNetGoogle Scholar
  40. 40.
    Soo-Chang Pei, Jian-Jiun Ding. Closed-form discrete fractional and affine Fourier transforms. IEEE Tran. Signal Processing, 2000, 48(5): 1338–1353.Google Scholar
  41. 41.
    Santhanam, B., McClellan, J. H., The discrete rotational Fourier transform, IEEE Tran. Signal Processing, 1996, 44(4): 994–998.Google Scholar
  42. 42.
    Yeh, M. H., Pei, S. C., A method for the discrete fractional Fourier transform computation, IEEE Tran. Signal Processing, 2003, 51(3): 889–891.MathSciNetGoogle Scholar
  43. 43.
    Pei, S. C., Yeh, M. H., Two dimensional discrete fractional Fourier transform, Signal Processing, 1998, 67: 99–108.CrossRefGoogle Scholar
  44. 44.
    Qi, L., Tao, R., Zhou, S. Y. et al., Detection and paramter estimation of multicomponent LFM signal based on the fractional Fourier transform, Science in China, Ser. F, 2004, 47(2): 184–198.MathSciNetGoogle Scholar
  45. 45.
    Alieva, T., Bastiaans, M. J., Stankovic, L., Signal reconstruction from two close fractional Fourier power spectra, IEEE Tran. Signal Processing, 2003, 51(1): 112–123.MathSciNetGoogle Scholar
  46. 46.
    Ertosun, M.G., Atli, H., Ozaktas, H. M. et al., Complex signal recovery from two fractional Fourier transform intensities-order and noise dependence, Optics Communications, 2005, 244(1–6): 61–70.Google Scholar
  47. 47.
    Deng, B., Tao, R., Qi, L. et al., Fractional Fourier transform and time-frequency filtering, Systems Engineering and Electronics (in Chinese), 2004, 26(10): 1357–1359, 1405.Google Scholar
  48. 48.
    Erden, M. F., Kutay, M. A., Ozaktas, H. M., Repeated filtering in consecutive fractional Fourier domains and its application to signal restoration, IEEE Tran. Signal Processing, 1999, 47(5): 1458–1462.Google Scholar
  49. 49.
    Kutay, M. A., Ozaktas, H. M., Arikan, O. et al., Optimal filtering in fractional Fourier domains, IEEE Tran. Signal Processing, 1997, 45(5): 1129–1143.Google Scholar
  50. 50.
    Qi, L., Tao, R., Zhou, S. Y. et al., An approach for optimal filtering of LFM signal, Acta Electronica Sinica (in Chinese), 2004, 32(9): 1464–1467.Google Scholar
  51. 51.
    Yetik, I. S., Nehorai, A., Beamforming using the fractional Fourier transform, IEEE Tran. Signal Processing, 2003, 51(6): 1663–1668.MathSciNetGoogle Scholar
  52. 52.
    Shin, S. G., Jin, S., Shin, S. Y. et al., Optical neural network using fractional Fourier transform, log-likelihood, and parallelism, Optics Communications, 1998, 153: 218–222.CrossRefGoogle Scholar
  53. 53.
    Barshan, B., Ayrulu, B., Fractional Fourier transform pre-processing for neural networks and its applications to object recognition, Neural Networks, 2002, 15: 131–140.CrossRefGoogle Scholar
  54. 54.
    Sarikaya, R., Gao, Y. Q., Saon, G., Fractional Fourier transform features for speech recognition, in: ICASSP ’04. Proceedings, vol.1. NJ, USA: IEEE, 2004, 529–532.Google Scholar
  55. 55.
    Ainsleigh, P. L., Kehtarnavaz, N., Characterization of transient wandering tones by dynamic modeling of fractional Fourier features, in: ICASSP ’00. Proceedings, vol.2. NJ, USA: IEEE, 2000, 665–668.Google Scholar
  56. 56.
    Djurovic, I., Stankovic, S., Pitas, I., Digital watermarking in the fractional Fourier transformation domain, Journal of Network and Computer Applications, 2001, 24: 167–173.CrossRefGoogle Scholar
  57. 57.
    Hennelly, B., Sheridan, J. T., Fractional Fourier transform-based image encryption: phase retrieval algorithm, Optics Communications, 2003, 226: 61–80.CrossRefGoogle Scholar
  58. 58.
    Tao, R., Zhou, Y. S., A novel method for DOA estimation of wide-band LFM sources based on fractional Fourier transform, Journal of Beijing Institute of Technology (in Chinese), 2005, 25(10): 895–899.Google Scholar
  59. 59.
    Jang, S., Choi, W., Sarkar, T. K. et al., Exploiting early time response using the fractional Fourier transform for analyzing transient radar returns, IEEE Tran. Antennas and Propagation, 2004, 52(11): 3109–3121.Google Scholar
  60. 60.
    Jouny, I. I., Radar backscatter analysis using fractional Fourier transform, in: IEEE Antennas and Propagation Society Symposium, NJ, USA: IEEE, 2004, 2115–2119.Google Scholar
  61. 61.
    Dong, Y. Q., Tao, R., Zhou, S. Y. et al., Sar moving target detection and imaging based on fractional Fourier transform, Acta Armamentarii (in Chinese), 1999, 20(2): 132–136.Google Scholar
  62. 62.
    Sun, H. B., Liu, G. S., Gu, H. et al., Application of the fractional Fourier transform to moving target detection in airborne SAR, IEEE Tran. Aerospace and Electronic Systems, 2002, 38(4): 1416–1424.Google Scholar
  63. 63.
    Zhao, X. H., Tao, R., A new MTD algorithm for passive radar based on fractional correlation, Acta Electronica Sinica (in Chinese), 2005, 33(9): 1567–1570.Google Scholar
  64. 64.
    Zhao, Y., Cai, P., Zhou, M. D., Digital computation of fractional Fourier transform, Journal of Harbin Engineering University (in Chinese), 2002, 23(6): 1–3.Google Scholar
  65. 65.
    Musha, T., Uchida, H., Nagashima, M., Self-monitoring sonar transducer array with internal accelerometers, IEEE Journal of Oceanic Engineering, 2002, 27(1): 28–34.CrossRefGoogle Scholar
  66. 66.
    Qi, L., Tao, R., Zhou, S. Y. et al., Frequency sweeping interference suppressing in DSSS system using fractional Fourier transform, Acta Electronica Sinica (in Chinese), 2004, 32(5): 799–802.Google Scholar
  67. 67.
    Chen, E. Q., Tao, R., Zhang, W. Q., A method for time-varying channel parameter estimation based on fractional Fourier transform, Acta Electronica Sinica (in Chinese), 2005, 33(12).Google Scholar
  68. 68.
    Martone, M., A multicarrier system based on the fractional Fourier transform for time-frequency-selective channels, IEEE Tran. Communications, 2001, 49(6): 1011–1020.MATHGoogle Scholar
  69. 69.
    Ju, Y., Barkat, B., Attallah, S., Analysis of peak-to-average power ratio of a multicarrier system based on the fractional Fourier transform, in: 2004 9th IEEE Singapore International Conference on Communication Systems, New York: IEEE, 2004, 165–168.Google Scholar
  70. 70.
    Huang, D. F., Chen, B. S., A multi-input-multi-output system approach for the computation of discrete fractional Fourier transform, Signal Processing, 2000, 80: 1501–1513.Google Scholar
  71. 71.
    Moshinsky, M., Quesne, C., Linear canonical transformations and their unitary representations, J. Math. Phys., 1971, 12(8): 1772–1780.CrossRefMathSciNetGoogle Scholar

Copyright information

© Science in China Press 2006

Authors and Affiliations

  1. 1.Department of Electronic EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.Department of Electronic EngineeringNaval Aeronautical Engineering InstituteYantaiChina

Personalised recommendations