Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Development of high-energy-density materials

Abstract

The performance of an energetic compound is mainly decided by parameters such as density, oxygen balance, heat of formation, and stability. Among these properties, density is the most important factor because it determines the detonation pressure and velocity. One of the trends in the development of high-energy-density materials (HEDMs) involves the study of energetic materials with high nitrogen levels. A compound with high nitrogen content can obtain substantial energy from the heat of formation rather than from the intramolecular oxidation of carbon skeleton to release energy in the form of a nitro group or nitrate ester. In addition to excellent performance, the newly developed energetic materials should also possess high working power and insensitivity toward external influences for ensuring the safety of charge and service, high energy release rate, long service life, good compatibility, excellent biological performance, low toxicity, safe battlefield environment, and low moisture absorption, which meet the requirements of military and civilian use. This review summarizes the research progress on global HEDMs. TNAZ, FOX-7, octanitrocubanane, TAM, TKX-50, and N5 were believed to show promise in achieving application goals. The prospective vision of HEDMs containing ions, total nitrogen, metal hydrogen, and nuclear energetic isomers, overcoming technical barriers, synthesis of all-nitrogen materials, theoretical studies on desorption/adsorption system, and challenging technical problems that need to be solved for the safety of synthetic nitrogen compounds were discussed to further elucidate the effect of this subject.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Lei Y P, Xu S L, Yang S Q, et al. Overview of overseas research institutions and main research results of high-energy materials (in Chinese). Initiat Pyrotechnol, 2006, 14: 45–50

  2. 2

    Wang Z Y. New progress in the study of high-energy density compounds abroad (in Chinese). Wing Missil J, 2003, 11: 34–37

  3. 3

    Fischer D, Klapötke T M, Piercey D G, et al. Synthesis of 5-aminotetrazole-1 N-oxide and its azo derivative: A key step in the development of new energetic materials. Chem Eur J, 2013, 19: 4602–4613

  4. 4

    Gao H, Shreeve J M. Azole-based energetic salts. Chem Rev, 2011, 111: 7377–7436

  5. 5

    Meng L, Zhao F Q, Yang L, et al. Energetic characteristics computation of propellants containing dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50) (in Chinese). Chin J Energ Mater, 2014, 22: 286–290

  6. 6

    Mueller D. New gun propellant with CL-20. Propell Explos Pyrot, 1999, 24: 176–181

  7. 7

    Zhang C, Sun C, Hu B, et al. Synthesis and characterization of the pentazolate anion cyclo-N5 in (N5)6(H3O)3(NH4)4Cl. Science, 2017, 355: 374–376

  8. 8

    Rossi C, Zhang K, Esteve D, et al. Nanoenergetic materials for MEMS: A review. J Microelectromech Syst, 2007, 16: 919–931

  9. 9

    Dong H S. Development and countermeasures of high energy density materials (in Chinese). J Energ Mater, 2004, 12: 1–12

  10. 10

    Nair U, Asthana S, Rao A, et al. Advances in high energy materials. Defence Sci J, 2010, 60: 137–151

  11. 11

    Xue H, Arritt S W, Twamley B, et al. Energetic salts from N-aminoazoles. Inorg Chem, 2004, 43: 7972–7977

  12. 12

    Miller D R, Swenson D C, Gillan E G. Synthesis and structure of 2,5,8-triazido-S-heptazine: An energetic and luminescent precursor to nitrogen-rich carbon nitrides. J Am Chem Soc, 2004, 126: 5372–5373

  13. 13

    Yin P, Parrish D A, Shreeve J M. Energetic multifunctionalized nitraminopyrazoles and their ionic derivatives: Ternary hydrogen-bond induced high energy density materials. J Am Chem Soc, 2015, 137: 4778–4786

  14. 14

    Swain P K, Singh H, Tewari S P. Energetic ionic salts based on nitrogen-rich heterocycles: A prospective study. J Mol Liq, 2010, 151: 87–96

  15. 15

    Xiang F, Wu Q, Zhu W, et al. Comparative theoretical studies on energetic ionic salts composed of heterocycle-functionalized nitraminofurazanate-based anions and triaminoguanidinium cation. J Chem Eng Data, 2014, 59: 295–306

  16. 16

    Parry M A, Thorpe B W. The role of HNS in the grain modification of TNT. J Cryst Growth, 1979, 47: 541–550

  17. 17

    Guo Y, Yu X, Sun W, et al. The hydrogen-enriched Al-B-N system as an advanced solid hydrogen-storage candidate. Angew Chem Int Ed, 2011, 50: 1087–1091

  18. 18

    Babuk V, Dolotkazin I, Gamsov A, et al. Nanoaluminum as a solid propellant fuel. J Propul Power, 2012, 25: 482–489

  19. 19

    Brinks H W, Istad-Lem A, Hauback B C. Mechanochemical synthesis and crystal structure of α′-AlD3 and α-AlD3. J Phys Chem B, 2006, 110: 25833–25837

  20. 20

    Ben-Itzhak I, Wells E, Studanski D, et al. Double and single ionization of hydrogen molecules by fast-proton impact. J Phys B-At Mol Opt Phys, 2001, 34: 1143–1161

  21. 21

    Grochala W, Edwards P P. Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem Rev, 2004, 104: 1283–1316

  22. 22

    Zhang C, Cao Y, Li H, et al. Toward low-sensitive and high-energetic cocrystal I: Evaluation of the power and the safety of observed energetic cocrystals. CrystEngComm, 2013, 15: 4003–4014

  23. 23

    Shu Y J, Wu Z K, Liu N, et al. Crystal control and cocrystal formation: Important route of modification research of energetic materials (in Chinese). Chin J Explos Propell, 2015, 38: 1–9

  24. 24

    Özhava D, Özkar S. Nanoceria supported rhodium(0) nanoparticles as catalyst for hydrogen generation from methanolysis of ammonia borane. Appl Catal B-Environ, 2018, 237: 1012–1020

  25. 25

    Ma X, Chen L, Lu F, et al. Calculation on multi-step thermal decomposition of HMX-and TATB-based composite explosive under cook-off conditions (in Chinese). Combust Explos Shock, 2014, 34: 67–74

  26. 26

    Zhang Z Z, Wang B Z, Ji Y P, et al. Study progress of several high energy density materials (HEDM) (in Chinese). Chin J Explos Propell, 2008, 31: 93–101

  27. 27

    Ma H Q, Feng X J, Zhu T B, et al. Research progress in high energy density material 1,3,3-trinitroazetidine (in Chinese). Chem Propell Polym Mater, 2012, 10: 20–24

  28. 28

    Klapötke T M, Chapman R D. Progress in the area of high energy density materials. In: Mingos D, ed. 50 Years of Structure and Bonding: The Anniversary Volume. Structure and Bonding, Vol 172. Cham: Springer, 2015. 49–63

  29. 29

    Mima K. Present status and future prospects of laser fusion and related high energy density plasma research. In: AIP Conference Proceedings. Vol. 740. Bajina Basta, 2004. 387–397

  30. 30

    Song Z W, Li X J. Recent research progress and application prospect of high energy density compound HNIW (in Chinese). Chem Propell Polym Mater, 2011, 9: 40–60

  31. 31

    Bi X, Liu J. Detonation properties of high explosives containing ammonia borane. Z Anorg Allg Chem, 2016, 642: 773–777

  32. 32

    Wang X, Liu J, Wang D, et al. Synthesis and characterization of sodium 5-chlorotetrazolate dihydrate by chlorination of 1H-tetrazole. Z Anorg Allg Chem, 2015, 641: 631–635

  33. 33

    Liu J P. Liquid Explosives. Berlin Heidelberg: Springer-Verlag, 2015

  34. 34

    Wang X L, Li J F, Chen L. The design of new high energy density materials based on CALYPSO method (in Chinese). Chin Sci Bull, 2015, 60: 2608–2615

  35. 35

    Türker L, Variş S. Prediction of explosive performance properties of z-DBBD and its isomers by quantum chemical computations. J Energ Mater, 2013, 31: 203–216

  36. 36

    Shi M D. The United States develops a new generation of high energy density materials (HEDM) (in Chinese). Chin J Explos Propell, 1994: 47–48

  37. 37

    Geetha M, Nair U R, Sarwade D B, et al. Studies on CL-20: The most powerful high energy materia. J Therm Anal Calorim, 2003, 73: 913–922

  38. 38

    Zhang M X, Eaton P E, Gilardi R. Hepta- und octanitrocubane. Angew Chem, 2000, 112: 422–426

  39. 39

    Kybett B D, Carroll S, Natalis P, et al. Thermodynamic properties of cubane. J Am Chem Soc, 1966, 88: 626

  40. 40

    Peköz R, Erkoç Ş. Structural and thermochemical properties, and energetics of C8(NO2)8 and C20(NO2)4n (n=0-4). Comput Mater Sci, 2009, 46: 849–853

  41. 41

    Kamlet M J, Adolph H G. The relationship of impact sensitivity with structure of organic high explosives. II. Polynitroaromatic explosives. Propell Explos Pyrot, 1979, 4: 30–34

  42. 42

    Sikder A K, Geetha M, Sarwade D B, et al. Studies on characterisation and thermal behaviour of 3-amino-5-nitro-1,2,4-triazole and its derivatives. J Hazard Mater, 2001, 82: 1–12

  43. 43

    Peiris S M, Pangilinan G I, Zerilli F J, et al. Structural studies and EOS of diaminodinitroethylene (DADNE, FOX7) under static compression. Am Inst Phys, 2002, 620: 181–184

  44. 44

    Fukata G, Kawazoe Y, Taguchi T. Reactivity of 4-diazo-3,5-dimethylpyrazole. I. Intramolecular cyclization reaction and the reaction mechanism. Yakugaku Zasshi, 1974, 94: 17–22

  45. 45

    Fukata G, Kawazoe Y, Taguchi T. Some aspects in reactivity of 4-diazo-3,5-dimethylpyrazole. Tetrahedron Lett, 1973, 14: 1199–1200

  46. 46

    Lee J S, Hsu C K, Chang C L. A study on the thermal decomposition behaviors of PETN, RDX, HNS and HMX. Thermochim Acta, 2002, 392–393: 173–176

  47. 47

    Banert K, Joo Y H, Rüffer T, et al. The exciting chemistry of tetraazidomethane. Angew Chem Int Ed, 2010, 46: 1168–1171

  48. 48

    Zheng W, Wong N B, Liang X, et al. Theoretical prediction of properties of triazidotri-S-triazine and its azido-tetrazole isomerism. J Phys Chem A, 2004, 108: 840–847

  49. 49

    Huynh M H V, Hiskey M A, Archuleta J G, et al. 3,6-Di(azido)-1,2,4,5-tetrazine: A precursor for the preparation of carbon nanospheres and nitrogen-rich carbon nitrides. Angew Chem Int Ed, 2004, 43: 5658–5661

  50. 50

    Huynh M H V, Hiskey M A, Hartline E L, et al. Polyazido high-nitrogen compounds: Hydrazo- and azo-1,3,5-triazine. Angew Chem, 2004, 116: 5032–5036

  51. 51

    He P, Zhang J G, Wu L, et al. Computational design and screening of promising energetic materials: Novel azobis(tetrazoles) with ten catenated nitrogen atoms chain. J Phys Org Chem, 2017, 30: e3674

  52. 52

    Zhang Q, Shreeve J M. Growing catenated nitrogen atom chains. Angew Chem Int Ed, 2013, 52: 8792–8794

  53. 53

    Li Y, Wang B, Chang P, et al. Novel catenated N6 energetic compounds based on substituted 1,2,4-triazoles: Synthesis, structures and properties. RSC Adv, 2018, 8: 13755–13763

  54. 54

    Friedrich M, Gálvez-Ruiz J C, Klapötke T M, et al. BTA copper complexes. Inorg Chem, 2005, 44: 8044–8052

  55. 55

    Li W, Tian J, Qi X, et al. Synthesis of 4,8-dinitraminodifurazano[3, 4-b,e]pyrazine derived nitrogen-rich salts as potential energetic materials. ChemistrySelect, 2018, 3: 849–854

  56. 56

    Wang S, Guan P, Hu X, et al. Research progress in azole-based energetic ionic salts (in Chinese). J Mater Eng, 2015, 43: 98–105

  57. 57

    Srinivas D, Ghule V D, Tewari S P, et al. Synthesis of amino, azido, nitro, and nitrogen-rich azole-substituted derivatives of 1H-benzotriazole for high-energy materials applications. Chem Eur J, 2012, 18: 15031–15037

  58. 58

    Xue H, Gao Y, Twamley B, et al. New energetic salts based on nitrogen-containing heterocycles. Chem Mater, 2005, 17: 191–198

  59. 59

    Zhang Y F, Xiong H L, Lin Q H, et al. Synthesis and characterization of 4,5-bis(tetrazol-5-yl)-1,2,3-triazole and its energetic salts (in Chinese). Chin J Explos Propell, 2017, 40: 41–46

  60. 60

    Zhang Y, Du Z, Han Z, et al. Synthesis, characterization, and energetic properties of N-rich salts of the 4,5-dicyano-2H-1,2,3-triazole anion. Propell Explos Pyrot, 2016, 40: 960–964

  61. 61

    Xu Z, Cheng G, Zhu S, et al. Nitrogen-rich salts based on the combination of 1,2,4-triazole and 1,2,3-triazole rings: A facile strategy for fine tuning energetic properties. J Mater Chem A, 2018, 6: 2239–2248

  62. 62

    Zhang J G, Li J Y, Zang Y, et al. Erratum: Synthesis and characterization of a novel energetic complex [Cd(DAT)6](NO3)2 (DAT=1,5-diamino-tetrazole) with high nitrogen content. Z Anorg Allg Chem, 2010, 636: 1645–1647

  63. 63

    Tao G H, Guo Y, Parrish D A, et al. Energetic 1,5-diamino-4H-tetrazolium nitro-substituted azolates. J Mater Chem, 2010, 20: 2999–3005

  64. 64

    Piekiel N, Zachariah M R. Decomposition of aminotetrazole based energetic materials under high heating rate conditions. J Phys Chem A, 2012, 116: 1519–1526

  65. 65

    Zhao J, Jin B, Peng R, et al. Synthesis and characterization of a new energetic salt based on dinitramide. Z Anorg Allg Chem, 2015, 641: 2630–2636

  66. 66

    Perreault N N, Halasz A, Thiboutot S, et al. Joint photomicrobial process for the degradation of the insensitive munition N-guanylurea-dinitramide (FOX-12). Environ Sci Technol, 2013, 47: 5193–5198

  67. 67

    Rahm M, Brinck T. Green propellants based on dinitramide salts: Mastering stability and chemical compatibility issues. In: Brinck T, ed. Green Energetic Materials. New Jersey: John Wiley & Sons, Ltd., 2015. 179–204

  68. 68

    Eldsäter C, Malmström E. Binder materials for green propellants. In: Brinck T, ed. Green Energetic Materials. New Jersey: John Wiley & Sons, Ltd., 2015. 205–234

  69. 69

    Zhao X X, Li S H, Wang Y, et al. Design and synthesis of energetic materials towards high density and positive oxygen balance by N-dinitromethyl functionalization of nitroazoles. J Mater Chem A, 2016, 4: 5495–5504

  70. 70

    Ghule V D. Computational studies on energetic properties of trinitrosubstituted imidazole-triazole and pyrazole-triazole derivatives. J Phys Chem A, 2012, 116: 9391–9397

  71. 71

    Haiges R, Christe K O. 5-(Fluorodinitromethyl)-2H-tetrazole and its tetrazolates: Preparation and characterization of new high energy compounds. Dalton Trans, 2015, 44: 10166–10176

  72. 72

    Zhang J, Zheng H, Zhang T, et al. Theoretical study for high-energy-density compounds from cyclophosphazene III. A quantum chemistry study: High nitrogen-contented energetic compound of 1,1,3,3,5,5,7,7-octaazido-cyclo-tetraphosphazene: N4P4(N3)8. Inorg Chim Acta, 2008, 361: 4143–4147

  73. 73

    Lu F, Wang E, Huang J, et al. The synthesis, property and reduction of high-nitrogen compound 3,3′,5,5′-tetraazido-4,4′-bis(1,2,4-triazole). Polyhedron, 2016, 117: 445–452

  74. 74

    Zhang J G, Niu X Q, Zhang S, et al. Novel potential high-nitrogen-content energetic compound: Theoretical study of diazido-tetrazole (CN10). Comput Theor Chem, 2011, 964: 291–297

  75. 75

    Liu Y, Zhang L, Wang G, et al. First-principle studies on the pressure-induced structural changes in energetic ionic salt 3-azido-1,2,4-triazolium nitrate crystal. J Phys Chem C, 2012, 116: 16144–16153

  76. 76

    Klapötke T M, Krumm B, Scherr M. The binary silver nitrogen anion [Ag(N3)2]. J Am Chem Soc, 2009, 131: 72–74

  77. 77

    Danoun G, Bayarmagnai B, Grünberg M F, et al. Sandmeyer trifluoromethylation of arenediazonium tetrafluoroborates. Angew Chem Int Ed, 2013, 52: 7972–7975

  78. 78

    Gobel M, Karaghiosoff K, Klapotke T M, et al. Nitrotetrazolate-2N-oxides and the strategy of N-oxide introduction. J Am Chem Soc, 2010, 132: 17216–17226

  79. 79

    Klapötke T M, Piercey D G, Stierstorfer J. The taming of CN7: The azidotetrazolate 2-oxide anion. Chem Eur J, 2011, 17: 13068–13077

  80. 80

    Tselinskii I V, Mel’Nikova S F, Romanova T V. Synthesis and reactivity of carbohydroximoyl azides: I. Aliphatic and aromatic carbohydroximoyl azides and 5-substituted 1-hydroxytetrazoles based thereon. Rus J Org Chem, 2001, 37: 430–436

  81. 81

    Hung-Low F, Peterson G R, Hope-Weeks L J. Controllable thermal degradation of 2,4,6-trinitrotoluene (TNT) by absorption and confinement into mixed metal sponges. J Therm Anal Calorim, 2013, 113: 475–480

  82. 82

    Mileham M, Stiegman A E, Kramer M P. Stability and degradation processes of 2,4,6-trinitrotoluene (TNT) on metal oxide surfaces. J Energetic Mater, 2007, 25: 19–34

  83. 83

    Singh G, Kapoor I P S, Tiwari S K, et al. Studies on energetic compounds part 15: Transition metal salts of NTO as potential energetic ballistic modifiers for composite solid propellants. J Energetic Mater, 2002, 20: 309–327

  84. 84

    Elbeih A, Pachman J, Zeman S, et al. Detonation characteristics of plastic explosives based on attractive nitramines with polyisobutylene and poly(methyl methacrylate) binders. J Energetic Mater, 2012, 30: 358–371

  85. 85

    Engel W, Heinisch H. Process for the preparation of compact nitroguanidine. US Patent, 4544769, 1985

  86. 86

    Liu Y C, Rui J H, Chen X. Study on recrystallization of nitroguanidine by orthogonal experiments (in Chinese). J Energ Mater, 2004, 12: 23–25

  87. 87

    Bond A D. What is a co-crystal? CrystEngComm, 2007, 9: 833–834

  88. 88

    Thomas J M. Crystal engineering: Origins, early adventures and some current trends. CrystEngComm, 2011, 13: 4304–4306

  89. 89

    Lin H, Chen J F, Zhu S G, et al. Synthesis, characterization, detonation performance, and DFT calculation of HMX/PNO cocrystal explosive. J Energetic Mater, 2016, 35: 95–108

  90. 90

    Ampleman G, Brousseau P, Thiboutot S, et al. Evaluation of GIM as a greener insensitive melt-cast explosive. Int J Energ Mater Chem, 2012, 11: 59–87

  91. 91

    Ravi P, Badgujar D M, Gore G M, et al. Review on melt cast explosives. Propell Explos Pyrot, 2011, 36: 393–403

  92. 92

    Thiboutot S, Brousseau P, Ampleman G, et al. Potential use of CL-20 in TNT/ETPE-based melt cast formulations. Propell Explos Pyrot, 2010, 33: 103–108

  93. 93

    Yang Z, Li H, Huang H, et al. Preparation and performance of a HNIW/TNT cocrystal explosive. Propell Explos Pyrot, 2013, 38: 495–501

  94. 94

    Bolton O, Matzger A J. Improved stability and smart-material functionality realized in an energetic cocrystal. Angew Chem, 2011, 123: 9122–9125

  95. 95

    Liehr M, Lewis J E, Rubloff G W. Kinetics of high-temperature thermal decomposition of SiO2 on Si(100). J Vac Sci Technol A-Vac Surfs Films, 1987, 5: 1559–1562

  96. 96

    Pei M J, Mao G W, Zheng K W, et al. Explosion performance of thermobaric fuel containing boron (in Chinese). Chin J Explos Propell, 2006, 29: 1–5

  97. 97

    Walsh M R, Walsh M E, Taylor S, et al. Characterization of PAX-21 insensitive munition detonation residues. Propell Explos Pyrot, 2013, 38: 399–409

  98. 98

    Wang X. Current situation of study on insensitive composite explosives in USA (in Chinese). Chin J Explos Propell, 2007, 30: 78–80

  99. 99

    Hu L, Ma Z, Ji M, et al. Preparation and characterization of Fe2O3/HTPB composite nanoparticle (in Chinese). Acta Chim Sinica, 2011, 69: 3028–3032

  100. 100

    Nicolich S, Niles J, Ferlazzo P, et al. Recent developments in reduced sensitivity melt pour explosives. In: 34th International Annual Conference of ICT. Karlsruhe, 2003. 24–27

  101. 101

    Liu J P, Yang W W, Liu Y, et al. Mechanism and characteristics of thermal action of HMX explosive mixture containing high-efficiency fuel. Sci China Tech Sci, 2019, 62: 578–586

  102. 102

    Liu X, Liu J. Effect of air humidity on microstructure and phase composition of lithium deuteride corrosion products. Corrosion Sci, 2017, 115: 129–134

  103. 103

    Kamlet M J, Adolph H G. Fluoronitro aliphatics. II. Fluorodinitromethyl compounds. Synthetic approaches and general properties. J Org Chem, 1968, 33: 3073–3080

  104. 104

    Li Z, Feng Z Q, Fang Y X. Effect of fluorine-containing components of composite explosives on crucible (in Chinese). Guangzhou Chem Indus, 2016, 44: 124–126

  105. 105

    Engelke R, Stine J R. Is N8 cubane stable? J Phys Chem, 1990, 94: 5689–5694

  106. 106

    Eremets M I, Gavriliuk A G, Trojan I A, et al. Single-bonded cubic form of nitrogen. Nat Mater, 2004, 3: 558–563

  107. 107

    Peiris S M, Piermarini G J. Static Compression of Energetic Materials. Berlin Heidelberg: Springer, 2008

  108. 108

    Hu B C, Zhang C, Yu C M, et al. A pentazole composite salt and its preparation method. China Patent, CN 106518797 A, 2017

  109. 109

    Yu T, Ma Y D, Lai W P, et al. Roads to pentazolate anion: A theoretical insight. R Soc Open Sci, 2018, 5: 172269

  110. 110

    Lauderdale W J, Stanton J F, Bartlett R J. Stability and energetics of metastable molecules: Tetraazatetrahedrane (N4), hexaazabenzene (N6), and octaazacubane (N8). J Phys Chem, 1992, 96: 1173–1178

  111. 111

    Jones J P, Trager W F, Carlson T J. The binding and regioselectivity of reaction of (R)- and (S)-nicotine with cytochrome P-450cam: Parallel experimental and theoretical studies. J Am Chem Soc, 1993, 115: 2961–2967

  112. 112

    Smirnov A, Lempert D, Pivina T, et al. Basic characteristics for estimation polynitrogen compounds efficiency. Cent Eur J Energ Mat, 2011, 8: 233–247

  113. 113

    Leininger M L, van Huis T J, Schaefer H F. Protonated high energy density materials: N4 tetrahedron and N8 octahedron. J Phys Chem A, 1997, 101: 4460–4464

  114. 114

    Christe K O, Wilson W W, Sheehy J A, et al. N5+: A novel homoleptic polynitrogen ion as a high energy density material. Angew Chem Int Ed, 2001, 40: 2947

  115. 115

    Jacob G, Renouard J. New progress in pentazolate chemistry. In: 43th International Annual Conference of ICT. Karlsruhe, 2012

  116. 116

    Steele B A, Oleynik I I. Sodium pentazolate: A nitrogen rich high energy density material. Chem Phys Lett, 2016, 643: 21–26

  117. 117

    Belau L, Haas Y, Zilberg S. Formation of the cyclo-pentazolate N5 anion by high-energy dissociation of phenylpentazole anions. J Phys Chem A, 2004, 108: 11715–11720

  118. 118

    Singh R P, Verma R D, Meshri D T, et al. Energetic nitrogen-rich salts and ionic liquids. Angew Chem Int Ed, 2006, 45: 3584–3601

  119. 119

    Nguyen M T, McGinn M A, Hegarty A F, et al. Can the pentazole anion (N5) be isolated and/or trapped in metal complexes? Polyhedron, 1985, 4: 1721–1726

  120. 120

    Frison G, Jacob G, Ohanessian G. Guiding the synthesis of pentazole derivatives and their mono- and di-oxides with quantum modeling. New J Chem, 2013, 37: 611–618

  121. 121

    Schroer T, Haiges R, Schneider S, et al. The race for the first generation of the pentazolate anion in solution is far from over. Chem Commun, 2005, 38: 1607–1609

  122. 122

    Zhang C, Yang C, Hu B, et al. A symmetric Co(N5)2(H2O)4·4 H2O high-nitrogen compound formed by cobalt(II) cation trapping of a cyclo-N5 anion. Angew Chem Int Ed, 2017, 56: 4512–4514

  123. 123

    Xu B, Liu J, Zhao L, et al. Theoretical study on the structure and stability of aluminum hydride (AlnH3n) clusters. J Mater Sci, 2013, 48: 2647–2658

  124. 124

    Xu B, Liu J, Wang X. Preparation and thermal properties of aluminum hydride polymorphs. Vacuum, 2014, 99: 127–134

  125. 125

    Cheng Y F, Ma H H, Shen Z W. Detonation characteristics of emulsion explosives sensitized by MgH Combust Explos Shock Waves, 2013, 49: 614–619

  126. 126

    Shoshin Y L, Mudryy R S, Dreizin E L. Preparation and characterization of energetic Al-Mg mechanical alloy powders. Combust Flame, 2002, 128: 259–269

  127. 127

    Chaturvedi S, Dave P N, Patel N N. Thermal decomposition of AP/HTPB propellants in presence of Zn nanoalloys. Appl Nanosci, 2015, 5: 93–98

  128. 128

    Liu L L, Li F S, Zhi C L, et al. Effect of magnesium based hydrogen storage materials on the properties of composite solid propellant (in Chinese). Chin J Energ Mater, 2009, 17: 501–504

  129. 129

    Shao H, He L, Lin H, et al. Progress and trends in magnesium-based materials for energy-storage research: A review. Energy Technol, 2018, 6: 445–458

  130. 130

    Wigner E, Huntington H B. On the possibility of a metallic modification of hydrogen. J Chem Phys, 1935, 3: 764–770

  131. 131

    Ladbury R. Livermore’s big guns produce liquid metallic hydrogen. Phys Today, 1996, 49: 17–18

  132. 132

    Silvera I F, Deemyad S. Pathways to metallic hydrogen. Low Temp Phys, 2009, 35: 318–325

  133. 133

    Knudson M D, Desjarlais M P, Becker A, et al. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Science, 2015, 348: 1455–1460

  134. 134

    Shvets V T. High temperature equation of state of metallic hydrogen. J Exp Theor Phys, 2007, 104: 655–660

  135. 135

    Dias R P, Silvera I F. Observation of the Wigner-Huntington transition to metallic hydrogen. Science, 2017, 355: 715–718

  136. 136

    Dirac P A M. Relativistic quantum mechanics. Proc R Soc A-Math Phys Eng Sci, 1932, 136: 453–464

  137. 137

    Anderson C D. The apparent existence of easily deflectable positives. Science, 1932, 76: 238–239

  138. 138

    Baker D J, Halvorson H. Antimatter. British J Philos Sci, 2010, 61: 93–121

  139. 139

    Zhang Z D, Oelert W, Grzonka D, et al. The antiproton annihilation detector system of the ATRAP experiment. Sci Bull, 2009, 54: 189–195

  140. 140

    Wu Y, Hu Y, Wang S. Reearch progress of positron-based antimatter (in Chinese). Prog Phys, 2008, 28: 83–95

  141. 141

    Lake J A. The fourth generation of nuclear power. Prog Nucl Energy, 2002, 40: 301–307

  142. 142

    Boos N, Le Blanc F, Krieg M, et al. Nuclear properties of the exotic high-spin isomer 178m2Hf from collinear laser spectroscopy. Phys Rev Lett, 1994, 72: 2689–2692

  143. 143

    Lotufo G R. Ecotoxicity of Explosives. Encyclopedia of Aquatic Ecotoxicology. Netherlands: Springer, 2012

  144. 144

    Zhang B, Kendall R J, Anderson T A. Toxicity of the explosive metabolites hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) and hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) to the earthworm Eisenia fetida. Chemosphere, 2006, 64: 86–95

  145. 145

    Steevens J A, Duke B M, Lotufo G R, et al. Toxicity of the explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in sediments to Chironomus tentans and Hyalella azteca: Low-dose hormesis and high-dose mortality. Environ Toxicol Chem, 2002, 21: 1475–1482

  146. 146

    Drzyzga O, Gorontzy T, Schmidt A, et al. Toxicity of explosives and related compounds to the luminescent bacterium Vibrio fischeri NRRL-B-11177. Arch Environ Contam Toxicol, 1995, 28: 229–235

  147. 147

    Stucki H. Toxicity and degradation of explosives. Chimia Int J Chem, 2004, 58: 409–413

  148. 148

    Lal N, Srivastava N. Phytoremediation of toxic explosives. In: Ashraf M, Ozturk M, Ahmad M, eds. Plant Adaptation and Phytoremediation. Dordrecht: Springer, 2010. 383–397

Download references

Author information

Correspondence to JiPing Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Liu, L. & Liu, X. Development of high-energy-density materials. Sci. China Technol. Sci. 63, 195–213 (2020). https://doi.org/10.1007/s11431-019-9534-9

Download citation

  • total nitrogen
  • high-energy-density material
  • energetic ion salt
  • metal hydrogen
  • nuclear energetic isomer