Advertisement

Memristor initial-boosted coexisting plane bifurcations and its extreme multi-stability reconstitution in two-memristor-based dynamical system

  • Han Bao
  • Mo Chen
  • HuaGan Wu
  • BoCheng BaoEmail author
Article

Abstract

Initial-dependent extreme multi-stability and offset-boosted coexisting attractors have been significantly concerned recently. This paper constructs a novel five-dimensional (5-D) two-memristor-based dynamical system by introducing two memristors with cosine memductance into a three-dimensional (3-D) linear autonomous dissipative system. Through theoretical analyses and numerical plots, the memristor initial-boosted coexisting plane bifurcations are found and the memristor initial-dependent extreme multi-stability is revealed in such a two-memristor-based dynamical system with plane equilibrium. Furthermore, a dimensionality reduction model with the determined equilibrium is established via an integral transformation method, upon which the memristor initial-dependent extreme multi-stability is reconstituted theoretically and expounded numerically Finally, physically circuit-implemented PSIM (power simulation) simulations are carried out to validate the plane offset-boosted coexisting behaviors.

Keywords

memristor-based system memristor initial coexisting plane bifurcations extreme multi-stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Eshraghian K, Kavehei O, Cho K R, et al. Memristive device fundamentals and modeling: Applications to circuits and systems simulation. Proc IEEE, 2012, 100: 1991–2007CrossRefGoogle Scholar
  2. 2.
    Li Q, Hu S, Tang S, et al. Hyperchaos and horseshoe in a 4D memristive system with a line of equilibria and its implementation. Int J Circ Theor Appl, 2014, 42: 1172–1188CrossRefGoogle Scholar
  3. 3.
    Zhou L, Wang C, Zhou L. Generating four-wing hyperchaotic attractor and two-wing, three-wing, and four-wing chaotic attractors in 4D memristive system. Int J Bifurcation Chaos, 2017, 27: 1750027MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bao B, Jiang T, Wang G, et al. Two-memristor-based Chua’s hyperchaotic circuit with plane equilibrium and its extreme multi-stability. Nonlinear Dyn, 2017, 89: 1157–1171CrossRefGoogle Scholar
  5. 5.
    Prousalis D A, Volos C K, Stouboulos I N, et al. Hyperchaotic memristive system with hidden attractors and its adaptive control scheme. Nonlinear Dyn, 2017, 90: 1681–1694MathSciNetCrossRefGoogle Scholar
  6. 6.
    Pham V T, Jafari S, Vaidyanathan S, et al. A novel memristive neural network with hidden attractors and its circuitry implementation. Sci China Tech Sci, 2016, 59: 358–363CrossRefGoogle Scholar
  7. 7.
    Njitacke Z T, Kengne J, Fotsin H B, et al. Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based Jerk circuit. Chaos Soliton Fract, 2016, 91: 180–197zbMATHCrossRefGoogle Scholar
  8. 8.
    Xu Q, Zhang Q L, Qian H, et al. Crisis-induced coexisting multiple attractors in a second-order nonautonomous memristive diode bridge-based circuit. Int J Circ Theor Appl, 2018, 46: 1917–1927CrossRefGoogle Scholar
  9. 9.
    Corinto F, Forti M. Memristor circuits: Bifurcations without parameters. IEEE Trans Circuits Syst I, 2017, 64: 1540–1551CrossRefGoogle Scholar
  10. 10.
    Chen M, Sun M, Bao H, et al. Flux-charge analysis of two-memristor-based Chua’s circuit: Dimensionality decreasing model for detecting extreme multistability. IEEE Trans Ind Electron, 2019, doi:  https://doi.org/10.1109/TIE.2019.2907444 CrossRefGoogle Scholar
  11. 11.
    Zhang Y, Liu Z, Wu H, et al. Two-memristor-based chaotic system and its extreme multistability reconstitution via dimensionality reduction analysis. Chaos Soliton Fract, 2019, 127: 354–363MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bao B C, Shi G D, Xu J P, et al. Dynamics analysis of chaotic circuit with two memristors. Sci China Tech Sci, 2011, 54: 2180–2187zbMATHCrossRefGoogle Scholar
  13. 13.
    Ishaq Ahamed A, Lakshmanan M. Nonsmooth bifurcations, transient hyperchaos and hyperchaotic beats in a memristive Murali-Laksh-manan-Chua circuit. Int J Bifurcation Chaos, 2013, 23: 1350098zbMATHCrossRefGoogle Scholar
  14. 14.
    Bao B C, Wu P Y, Bao H, et al. Numerical and experimental confirmations of quasi-periodic behavior and chaotic bursting in third-order autonomous memristive oscillator. Chaos Soliton Fract, 2018, 106: 161–170MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wu H, Ye Y, Chen M, et al. Extremely slow passages in low-pass filter-based memristive oscillator. Nonlinear Dyn, 2019, 97: 2339–2353CrossRefGoogle Scholar
  16. 16.
    Sah M P, Hyongsuk Kim M P, Chua L O. Brains are made of memristors. IEEE Circuits Syst Mag, 2014, 14: 12–36CrossRefGoogle Scholar
  17. 17.
    Ma W, Zidan M A, Lu W D. Neuromorphic computing with memristive devices. Sci China Inf Sci, 2018, 61: 060422CrossRefGoogle Scholar
  18. 18.
    Ma J, Tang J. A review for dynamics in neuron and neuronal network. Nonlinear Dyn, 2017, 89: 1569–1578MathSciNetCrossRefGoogle Scholar
  19. 19.
    Bao H, Hu A H, Liu W B, et al. Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Trans Neural Netw Learn Syst, 2019, doi:  https://doi.org/10.1109/TNNLS.2019.2905137
  20. 20.
    Ge M, Jia Y, Xu Y, et al. Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn, 2018, 91: 515–523CrossRefGoogle Scholar
  21. 21.
    Bao H, Liu W, Hu A. Coexisting multiple firing patterns in two adjacent neurons coupled by memristive electromagnetic induction. Nonlinear Dyn, 2019, 95: 43–56CrossRefGoogle Scholar
  22. 22.
    Lu L L, Jia Y, Xu Y, et al. Energy dependence on modes of electric activities of neuron driven by different external mixed signals under electromagnetic induction. Sci China Tech Sci, 2019, 62: 427–440CrossRefGoogle Scholar
  23. 23.
    Rajamani V, Kim H, Chua L. Morris-Lecar model of third-order barnacle muscle fiber is made of volatile memristors. Sci China Inf Sci, 2018, 61: 060426MathSciNetCrossRefGoogle Scholar
  24. 24.
    Hu M, Li H, Chen Y, et al. Memristor crossbar-based neuromorphic computing system: A case study. IEEE Trans Neural Netw Learn Syst, 2014, 25: 1864–1878CrossRefGoogle Scholar
  25. 25.
    Ntinas V, Vourkas I, Abusleme A, et al. Experimental study of artificial neural networks using a digital memristor simulator. IEEE Trans Neural Netw Learn Syst, 2018, 29: 5098–5110CrossRefGoogle Scholar
  26. 26.
    Du L, Cao Z L, Lei Y M, et al. Electrical activities of neural systems exposed to sinusoidal induced electric field with random phase. Sci China Tech Sci, 2019, 62: 1141–1150CrossRefGoogle Scholar
  27. 27.
    Bao B, Hu A, Bao H, et al. Three-dimensional memristive hindmarshrose neuron model with hidden coexisting asymmetric behaviors. Complexity, 2018, 3872573Google Scholar
  28. 28.
    Lv M, Ma J, Yao Y G, et al. Synchronization and wave propagation in neuronal network under field coupling. Sci China Tech Sci, 2019, 62: 448–457CrossRefGoogle Scholar
  29. 29.
    Parastesh F, Rajagopal K, Alsaadi F E, et al. Birth and death of spiral waves in a network of Hindmarsh-Rose neurons with exponential magnetic flux and excitable media. Appl Math Comput, 2019, 354: 377–384MathSciNetGoogle Scholar
  30. 30.
    Yan J, Zhang Q, Yin P. RNA editing machinery in plant organelles. Sci China Life Sci, 2018, 61: 162–169CrossRefGoogle Scholar
  31. 31.
    Wu F, Wang C, Jin W, et al. Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Physica A, 2017, 469: 81–88MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Li C, Min F, Jin Q, et al. Extreme multistability analysis of memristor-based chaotic system and its application in image decryption. AIP Adv, 2017, 7: 125204CrossRefGoogle Scholar
  33. 33.
    Chen M, Sun M, Bao B, et al. Controlling extreme multistability of memristor emulator-based dynamical circuit in flux-charge domain. Nonlinear Dyn, 2018, 91: 1395–1412CrossRefGoogle Scholar
  34. 34.
    Chen M, Feng Y, Bao H, et al. Hybrid state variable incremental integral for reconstructing extreme multistability in memristive jerk system with cubic nonlinearity. Complexity, 2019, 8549472Google Scholar
  35. 35.
    Jafari S, Ahmadi A, Panahi S, et al. Extreme multi-stability: When imperfection changes quality. Chaos Soliton Fract, 2018, 108: 182–186CrossRefGoogle Scholar
  36. 36.
    Njitacke Z T, Kengne J, Tapche R W, et al. Uncertain destination dynamics of a novel memristive 4D autonomous system. Chaos Soliton Fract, 2018, 107: 177–185MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Yuan F, Deng Y, Li Y, et al. The amplitude, frequency and parameter space boosting in a memristor-meminductor-based circuit. Nonlinear Dyn, 2019, 96: 389–405CrossRefGoogle Scholar
  38. 38.
    Bao B C, Bao H, Wang N, et al. Hidden extreme multistability in memristive hyperchaotic system. Chaos Soliton Fract, 2017, 94: 102–111MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Bao H, Liu W, Chen M. Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh-Nagumo circuit. Nonlinear Dyn, 2019, 96: 1879–1894CrossRefGoogle Scholar
  40. 40.
    Li C, Sprott J C, Mei Y. An infinite 2-D lattice of strange attractors. Nonlinear Dyn, 2017, 89: 2629–2639MathSciNetCrossRefGoogle Scholar
  41. 41.
    Li C, Joo-Chen Thio W, Sprott J C, et al. Constructing infinitely many attractors in a programmable chaotic circuit. IEEE Access, 2018, 6: 29003–29012CrossRefGoogle Scholar
  42. 42.
    Li C, Sprott J C. An infinite 3-D quasiperiodic lattice of chaotic attractors. Phys Lett A, 2018, 382: 581–587MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Li C, Xu Y, Chen G, et al. Conditional symmetry: Bond for attractor growing. Nonlinear Dyn, 2019, 95: 1245–1256CrossRefGoogle Scholar
  44. 44.
    Sun J, Zhao X, Fang J, et al. Autonomous memristor chaotic systems of infinite chaotic attractors and circuitry realization. Nonlinear Dyn, 2018, 94: 2879–2887CrossRefGoogle Scholar
  45. 45.
    Strelioff C C, Hübler A W. Medium-term prediction of chaos. Phys Rev Lett, 2006, 96: 044101CrossRefGoogle Scholar
  46. 46.
    Chen C, Chen J, Bao H, et al. Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dyn, 2019, 95: 3385–3399CrossRefGoogle Scholar
  47. 47.
    He S, Sun K, Banerjee S. Dynamical properties and complexity in fractional-order diffusionless Lorenz system. Eur Phys J Plus, 2016, 131: 254CrossRefGoogle Scholar
  48. 48.
    Fortuna L, Baglio S, Arena P, et al. Hyperchaos from cellular neural networks. Electron Lett, 1995, 31: 250–251CrossRefGoogle Scholar
  49. 49.
    Caponetto R, Dongola G, Fortuna L, et al. New results on the synthesis of FO-PID controllers. Commun Nonlinear Sci Numer Simul, 2010, 15: 997–1007MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Wang N, Li C, Bao H, et al. Generating multi-scroll Chua’s attractors via simplified piecewise-linear Chua’s diode. IEEE Trans Circuits Syst I, 2019, doi:  https://doi.org/10.1109/TCSI.2019.2933365
  51. 51.
    Buscarino A, Fortuna L, Frasca M. Experimental robust synchronization of hyperchaotic circuits. Physica D-Nonlinear Phenomena, 2009, 238: 1917–1922zbMATHCrossRefGoogle Scholar
  52. 52.
    Bao H, Wang N, Bao B, et al. Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria. Commun Nonlinear Sci Numer Simul, 2018, 57: 264–275MathSciNetCrossRefGoogle Scholar
  53. 53.
    Hua Z, Zhou Y, Bao B C. Two-dimensional sine chaotification system with hardware implementation. IEEE Trans Ind Inf, 2019, doi:  https://doi.org/10.1109/TII.2019.2923553
  54. 54.
    Li C, Lin D, Lu J, et al. Cryptanalyzing an image encryption algorithm based on autoblocking and electrocardiography. IEEE MultiMedia, 2018, 25: 46–56CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Information Science and EngineeringChangzhou UniversityChangzhouChina

Personalised recommendations