Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Upward propagation of lightning-generated whistler waves into the radiation belts

  • 64 Accesses

Abstract

Lightning-generated whistler (LGW) waves which induce energetic electron precipitation provide an important coupling between the ionosphere and radiation belts. Using the ray-tracing technique, we examine the propagation behaviour of LGW waves and show that they can travel upward into the radiation belts during higher geomagnetic activities due to the plasmapause inward compression, particularly in cases of lower wave frequencies, lower wave normal angles and azimuthal angles. Both perpendicular and parallel group velocities of LGW waves remain in relatively small values inside the plasmasphere but change rapidly to high values outside the plasmasphere. The launching latitude increases with increasing LGW wave normal angle. These results here further reveal a detailed picture on how LGW waves escape out of the plasmasphere and onto the radiation belts.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Lyons L R, Thorne R M, Kennel C F. Pitch-angle diffusion of radiation belt electrons within the plasmasphere. J Geophys Res, 1972, 77: 3455–3474

  2. 2

    Horne R B, Thorne R M. Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophys Res Lett, 1998, 25: 3011–3014

  3. 3

    Selesnick R S. Atmospheric losses of radiation belt electrons. J Geophys Res, 2003, 108: 1468

  4. 4

    Li L Y, Cao J B, Zhou G. Whistler-mode waves modify the high-energy electron slot region and the outer radiation belt (in Chinese). Chin J Geophys, 2008, 51: 316–324

  5. 5

    Summers D, Ni B, Meredith N P, et al. Electron scattering by whistler-mode ELF hiss in plasmaspheric plumes. J Geophys Res, 2008, 113: A04219

  6. 6

    Xiao F, Su Z, Zheng H, et al. Modeling of outer radiation belt electrons by multidimensional diffusion process. J Geophys Res, 2009, 114: A03201

  7. 7

    Yu J, Li L Y, Cao J B, et al. Multiple loss processes of relativistic electrons outside the heart of outer radiation belt during a storm sudden commencement. J Geophys Res Space Phys, 2015, 120: 10275–10288

  8. 8

    Horne R B, Thorne R M, Shprits Y Y, et al. Wave acceleration of electrons in the van Allen radiation belts. Nature, 2005, 437: 227–230

  9. 9

    Reeves G D, Spence H E, Henderson M G, et al. Electron acceleration in the heart of the van Allen radiation belts. Science, 2013, 341: 991–994

  10. 10

    Thorne R M, Li W, Ni B, et al. Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus. Nature, 2013, 504: 411–414

  11. 11

    Xiao F, Zong Q G, Chen L. Pitch-angle distribution evolution of energetic electrons in the inner radiation belt and slot region during the 2003 Halloween storm. J Geophys Res, 2009, 114: A01215

  12. 12

    Xiao F, Yang C, He Z, et al. Chorus acceleration of radiation belt relativistic electrons during March 2013 geomagnetic storm. J Geophys Res Space Phys, 2014, 119: 3325–3332

  13. 13

    Xiao F, Yang C, Su Z, et al. Wave-driven butterfly distribution of van Allen belt relativistic electrons. Nat Commun, 2015, 6: 8590

  14. 14

    Yang C, Su Z, Xiao F, et al. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus. Geophys Res Lett, 2016, 43: 8339–8347

  15. 15

    Li L, Cao J B, Zhou G. Combined acceleration of electrons by whistler-mode and compressional ULF turbulences near the geosynchronous orbit. J Geophys Res, 2005, 110: A03203

  16. 16

    Li L Y, Yu J, Cao J B, et al. Roles of whistler mode waves and magnetosonic waves in changing the outer radiation belt and the slot region. J Geophys Res Space Phys, 2017, 122: 5431–5448

  17. 17

    Jin Y Y, Yang C, He Y H, et al. Butterfly distribution of Earths radiation belt relativistic electrons induced by dayside chorus. Sci China Tech Sci, 2018, 61: 212–218

  18. 18

    Green J L, Boardsen S, Garcia L, et al. On the origin of whistler mode radiation in the plasmasphere. J Geophys Res, 2005, 110: A03201

  19. 19

    Inan U S, Bell T F, Bortnik J, et al. Controlled precipitation of radiation belt electrons. J Geophys Res, 2003, 108: A51186

  20. 20

    Jasna D, Inan U S, Bell T F. Precipitation of suprathermal (100 eV) electrons by oblique whistler waves. Geophys Res Lett, 1992, 19: 1639–1642

  21. 21

    Ristić-Djurović J L, Bell T F, Inan U S. Precipitation of radiation belt electrons by magnetospherically reflected whistlers. J Geophys Res, 1998, 103: 9249–9260

  22. 22

    Abel B, Thorne R M. Electron scattering loss in Earths inner magnetosphere 1. Dominant physical processes. J Geophys Res, 1998, 103: 2385–2396

  23. 23

    Abel B, Thorne R M. Electron scattering loss in Earths inner magnetosphere 2. Sensitivity to model parameters. J Geophys Res, 1998, 103: 2397–2407

  24. 24

    Blake J B, Inan U S, Walt M, et al. Lightning-induced energetic electron flux enhancements in the drift loss cone. J Geophys Res, 2001, 106: 29733–29744

  25. 25

    Bortnik, J, Inan U S, Bell T F. L dependence of energetic electron precipitation driven by magnetospherically reflecting whistler waves. J Geophys Res-Space Phys, 2002, 107: 1979–1999

  26. 26

    Horne R B. Path-integrated growth of electrostatic waves: The generation of terrestrial myriametric radiation. J Geophys Res, 1989, 94: 8895–8909

  27. 27

    Chen L, Thorne R M, Jordanova V K, et al. Global simulation of magnetosonic wave instability in the storm time magnetosphere. J Geophys Res, 2010, 115: A11222

  28. 28

    Xiao F, Chen L, Zheng H, et al. A parametric ray tracing study of superluminous auroral kilometric radiation wave modes. J Geophys Res, 2007, 112: A10214

  29. 29

    Gallagher D L, Craven P D, Comfort R H. Global core plasma model. J Geophys Res, 2000, 105: 18819–18833

  30. 30

    Thorne R M, Horne R B. Landau damping of magnetospherically reflected whistlers. J Geophys Res, 1994, 99: 17249–17258

  31. 31

    Bortnik J, Inan U S, Bell T F. Energy distribution and lifetime of magnetospherically reflecting whistlers in the plasmasphere. J Geophys Res, 2003, 108: 1199

  32. 32

    Li W, Bortnik J, Thorne R M, et al. Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMIS wave observations. J Geophys Res, 2011, 116: A12205

  33. 33

    Chen L, Thorne R M, Li W, et al. Modeling the wave normal distribution of chorus waves. J Geophys Res Space Phys, 2013, 118: 1074–1088

  34. 34

    Agapitov O, Krasnoselskikh V, Khotyaintsev Y V, et al. A statistical study of the propagation characteristics of whistler waves observed by cluster. Geophys Res Lett, 2011, 38: L20103

  35. 35

    Agapitov O, Artemyev A, Krasnoselskikh V, et al. Statistics of whistler mode waves in the outer radiation belt: Cluster STAFF-SA measurements. J Geophys Res Space Phys, 2013, 118: 3407–3420

  36. 36

    Helliwell R A. Low-frequency waves in the magnetosphere. Rev Geophys, 1969, 7: 281–303

  37. 37

    Chen L, Bortnik J, Thorne R M, et al. Three-dimensional ray tracing of VLF waves in a magnetospheric environment containing a plasmaspheric plume. Geophys Res Lett, 2009, 36: L22101

Download references

Author information

Correspondence to FuLiang Xiao.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41531072, 41674166, 41774194 & 41804171.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Zhou, Q., Xiao, F. et al. Upward propagation of lightning-generated whistler waves into the radiation belts. Sci. China Technol. Sci. 63, 243–248 (2020). https://doi.org/10.1007/s11431-018-9486-9

Download citation

Keywords

  • lightning-generated whistler waves
  • radiation belts
  • numerical simulation