Advertisement

Science China Technological Sciences

, Volume 62, Issue 8, pp 1431–1437 | Cite as

The possibility of using all-sky meteor radar to observe ionospheric E-region field-aligned irregularities

  • HaiYong Xie
  • GuoZhu LiEmail author
  • BaiQi Ning
  • Iain Reid
  • LianHuan Hu
  • BaoYuan Wu
  • You Yu
  • SiPeng Yang
Article
  • 14 Downloads

Abstract

All-sky meteor radars are primarily used for meteor observations. This paper reports the first observations of ionospheric E-region field-aligned irregularities (FAIs) from a conventional all-sky meteor radar located at Wuhan (31°N, 114°E) for the period of March–June 2018. E-region FAI echoes evident in range-time intensity (RTI) maps show quasiperiodic striations with positive and negative slopes, which are consistent with multiple FAI structures moving across the wide beam of the meteor radar. A statistical analysis shows that out of a total of 111 d, there are 73 d with E-region FAI echoes detected by the meteor radar. The FAI events correspond well with the presence of sporadic-E layers which provide the necessary plasma density gradient for the development of gradient drift instability producing FAIs. The results demonstrate the capability of conventional meteor radars to make simultaneous routine observations of meteors and ionospheric E-region FAIs through incorporating RTI and spectral analysis into the online realtime data processing. Meteor radar observations could potentially address the limitations of ionospheric radars, which cannot provide simultaneous measurements of neutral winds and irregularity structures, and thereby contribute to better understanding of the dynamical processes producing E-region irregularities.

Keywords

meteor radar ionospheric irregularities sporadic E layer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hysell D L, Burcham J D. The 30-MHz radar interferometer studies of midlatitude E region irregularities. J Geophys Res, 2000, 105: 12797–12812CrossRefGoogle Scholar
  2. 2.
    Lu F, Farley D T, Swartz W E. Spread in aspect angles of equatorial E region irregularities. J Geophys Res, 2008, 113: A11309Google Scholar
  3. 3.
    Yamamoto M, Fukao S, Woodman R F, et al. Mid-latitude E region field-aligned irregularities observed with the MU radar. J Geophys Res, 1991, 96: 15943–15949CrossRefGoogle Scholar
  4. 4.
    Kagan L M, Kelley M C. A wind-driven gradient drift mechanism for mid-latitude E-region ionospheric irregularities. Geophys Res Lett, 1998, 25: 4141–4144CrossRefGoogle Scholar
  5. 5.
    Chau J L, Woodman R F. Low-latitude quasiperiodic echoes observed with the Piura VHF Radar in the E region. Geophys Res Lett, 1999, 26: 2167–2170CrossRefGoogle Scholar
  6. 6.
    Chu Y H, Wang C Y. An evidence of beam broadening effect dominating Doppler spectra of field-aligned irregularities in sporadic E region made with the Chung-Li radar. J Geophys Res, 2005, 110: A09305Google Scholar
  7. 7.
    Venkateswara Rao N, Patra A K, Rao S V B. Some new aspects of low-latitude E-region QP echoes revealed by Gadanki radar: Are they due to Kelvin-Helmholtz instability or gravity waves? J Geophys Res, 2008, 113: A03309Google Scholar
  8. 8.
    Hocking W K, Thayaparan T, Jones J. Meteor decay times and their use in determining a diagnostic mesospheric Temperature-pressure parameter: Methodology and one year of data. Geophys Res Lett, 1997, 24: 2977–2980CrossRefGoogle Scholar
  9. 9.
    Holdsworth D A, Reid I M, Cervera M A. Buckland park all-sky interferometric meteor radar. Radio Sci, 2004, 39: RS5009Google Scholar
  10. 10.
    Reid I M. MF and HF radar techniques for investigating the dynamics and structure of the 50 to 110 km height region: A review. Prog Earth Planet Sci, 2015, 2: 33CrossRefGoogle Scholar
  11. 11.
    Jones J, Jones W. Meteor radiant activity mapping using single-station radar observations. Mon Not R Astron Soc, 2006, 367: 1050–1056CrossRefGoogle Scholar
  12. 12.
    Dou X K, Xue X H, Li T, et al. Possible relations between meteors, enhanced electron density layers, and sporadic sodium layers. J Geophys Res, 2010, 115: A06311CrossRefGoogle Scholar
  13. 13.
    Li G, Ning B, Hu L, et al. A comparison of lower thermospheric winds derived from range spread and specular meteor trail echoes. J Geophys Res, 2012, 117: A03310Google Scholar
  14. 14.
    Younger J P, Reid I M, Li G, et al. Observations of the new came-lopardalids meteor shower using a 38.9 MHz radar at Mohe, China. Icarus, 2015, 253: 25–30CrossRefGoogle Scholar
  15. 15.
    Lee C, Kim J H, Jee G, et al. New method of estimating temperatures near the mesopause region using meteor radar observations. Geophys Res Lett, 2016, 43: 10580–10585CrossRefGoogle Scholar
  16. 16.
    Liu L, Liu H, Chen Y, et al. Variations of the meteor echo heights at Beijing and Mohe, China. J Geophys Res Space Phys, 2017, 122: 1117–1127CrossRefGoogle Scholar
  17. 17.
    Gong Y, Li C, Ma Z, et al. Study of the quasi-5-day wave in the MLT region by a meteor radar chain. J Geophys Res Atmosph, 2018, 123: 9474–9487CrossRefGoogle Scholar
  18. 18.
    Yi W, Reid I M, Xue X, et al. High- and middle-latitude neutral mesospheric density response to geomagnetic storms. Geophys Res Lett, 2018, 45: 436–444CrossRefGoogle Scholar
  19. 19.
    Ning B Q, Hu L H, Li G Z, et al. The first time observations of low-latitude ionospheric irregularities by VHF radar in Hainan. Sci China Tech Sci, 2012, 55: 1189–1197CrossRefGoogle Scholar
  20. 20.
    Li G, Ning B, Hu L, et al. Observations on the field-aligned irregularities using Sanya VHF radar: 2 low latitude ionospheric E-region quasi-periodic echoes in the East Asian sector. Chin J Geophys, 2013, 56: 2141–2151Google Scholar
  21. 21.
    Li G Z, Ning B Q, Hu L H. Interferometry observations of low-latitude E-region irregularity patches using the Sanya VHF radar. Sci China Tech Sci, 2014, 57: 1552–1561CrossRefGoogle Scholar
  22. 22.
    Li G Z, Ning B Q, Li A, et al. First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations. Earth Planet Phys, 2018, 2: 15–21CrossRefGoogle Scholar
  23. 23.
    Li G, Ning B, Chu Y H, et al. Structural evolution of long-duration meteor trail irregularities driven by neutral wind. J Geophys Res Space Phys, 2014, 119: 10,348–10,357CrossRefGoogle Scholar
  24. 24.
    Zhou C, Liu Y, Tang Q, et al. Investigation on the occurrence of mid-latitude E-region irregularity by Wuhan VHF radar and its relationship with sporadic E layer. IEEE Trans Geosci Remote Sens, 2018, 56: 7207–7216CrossRefGoogle Scholar
  25. 25.
    Tsunoda R T, Fukao S, Yamamoto M. On the origin of quasi-periodic radar backscatter from midlatitude sporadic E. Radio Sci, 1994, 29: 349–365CrossRefGoogle Scholar
  26. 26.
    Larsen M F. A shear instability seeding mechanism for quasiperiodic radar echoes. J Geophys Res, 2000, 105: 24931–24940CrossRefGoogle Scholar
  27. 27.
    Ogawa T, Takahashi O, Otsuka Y, et al. Simultaneous middle and upper atmosphere radar and ionospheric sounder observations of midlatitude E region irregularities and sporadic E layer. J Geophys Res, 2002, 107: 1275CrossRefGoogle Scholar
  28. 28.
    Patra A K, Sripathi S, Sivakumar V, et al. Statistical characteristics of VHF radar observations of low latitude E-region field-aligned irregularities over Gadanki. J Atmos Sol-Terrestrial Phys, 2004, 66: 1615–1626CrossRefGoogle Scholar
  29. 29.
    Xie H Y, Ning B Q, Zhao X K, et al. Case study of simultaneous observations of sporadic sodium layer, E-region field-aligned irregularities and sporadic E layer at low latitude of China. Adv Space Res, 2017, 59: 1559–1567CrossRefGoogle Scholar
  30. 30.
    Yu Y, Wan W, Ning B, et al. Tidal wind mapping from observations of a meteor radar chain in December 2011. J Geophys Res Space Phys, 2013, 118: 2321–2332CrossRefGoogle Scholar
  31. 31.
    Xue X H, Dou X K, Lei J, et al. Lower thermospheric-enhanced sodium layers observed at low latitude and possible formation: Case studies. J Geophys Res Space Phys, 2013, 118: 2409–2418CrossRefGoogle Scholar
  32. 32.
    Haldoupis C. Midlatitude sporadic E. A typical paradigm of atmosphere-ionosphere coupling. Space Sci Rev, 2012, 168: 441–461CrossRefGoogle Scholar
  33. 33.
    Haldoupis C, Schlegel K. Characteristics of midlatitude coherent backscatter from the ionospheric E region obtained with sporadic E scatter experiment. J Geophys Res, 1996, 101: 13387–13397CrossRefGoogle Scholar
  34. 34.
    Shalimov S, Haldoupis C, Schlegel K. Large polarization electric fields associated with midlatitude sporadic E. J Geophys Res, 1998, 103: 11617–11625CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • HaiYong Xie
    • 1
    • 2
  • GuoZhu Li
    • 1
    • 2
    • 3
    Email author
  • BaiQi Ning
    • 1
    • 2
  • Iain Reid
    • 4
    • 5
  • LianHuan Hu
    • 1
    • 2
  • BaoYuan Wu
    • 2
  • You Yu
    • 1
    • 3
  • SiPeng Yang
    • 1
    • 2
  1. 1.Key Laboratory of Earth and Planetary Physics, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.Beijing National Observatory of Space Environment, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  3. 3.College of Earth and Planetary SciencesUniversity of Chinese Academy of ScienceBeijingChina
  4. 4.ATmospheric RADar (ATRAD) Pty LtdThebartonAustralia
  5. 5.School of Physical SciencesUniversity of AdelaideAdelaideAustralia

Personalised recommendations