Flexible and stretchable metal oxide gas sensors for healthcare

  • XiaoQi Zheng
  • HuanYu ChengEmail author
Review Special Topic: Flexible Electronics Manufacturing


Capable of measuring volatile biomarker produced by the metabolism from several secretion pathways, flexible and stretchable metal oxide gas sensors have received increasing attention and their development for healthcare starts to gain momentum. Integration of semiconducting metal oxide on a soft, thin, flexible substrate is the key to enable the flexible property to the gas sensor and such integration typically involves either a direct growth or post transfer of the metal oxide on or to the flexible substrate. In addition to the planar plastic substrate, textile represents another important class of flexible substrates due to its ease of integration with clothing. Moreover, the integration of metal oxide on a single fiber provides a great versatility for different applications. Though flexible sensors can easily conform to the developable surface (e.g., cylinder or cone) from a bending deformation, the conformal contact between the sensor and the tissue surface that is often non-developable requires the sensor to be capable of stretching. Due to the intrinsically brittle nature of the semiconducting metal oxide, several stretchable structures have been explored. Despite the great strides made to the burgeoning area of flexible and stretchable metal oxide gas sensors, grand challenges still need to be overcome before the technology can be applied for the practical application. The selected challenges discussed in this mini-review also represent a fraction of possibilities and opportunities for the research community in the future.


metal oxide gas sensor flexible and stretchable properties structural design strategies volatile biomarker 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Patel S, Park H, Bonato P, et al. A review of wearable sensors and systems with application in rehabilitation. J NeuroEng Rehabil, 2012, 9: 21CrossRefGoogle Scholar
  2. 2.
    Trung T Q, Lee N E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv Mater, 2016, 28: 4338–4372CrossRefGoogle Scholar
  3. 3.
    Cheng J P, Wang J, Li Q Q, et al. A review of recent developments in tin dioxide composites for gas sensing application. J Industrial Eng Chem, 2016, 44: 1–22CrossRefGoogle Scholar
  4. 4.
    Mirzaei A, Leonardi S G, Neri G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceramics Int, 2016, 42: 15119–15141CrossRefGoogle Scholar
  5. 5.
    Reid M, Reid R D, Oswal P, et al. NaDos: A real-time, wearable, personal exposure monitor for hazardous organic vapors. Senss Actuators B-Chem, 2018, 255: 2996–3003CrossRefGoogle Scholar
  6. 6.
    Kahn N, Lavie O, Paz M, et al. Dynamic nanoparticle-based flexible sensors: Diagnosis of ovarian carcinoma from exhaled breath. Nano Lett, 2015, 15: 7023–7028CrossRefGoogle Scholar
  7. 7.
    Yamada Y, Hiyama S, Toyooka T, et al. Ultratrace measurement of acetone from skin using zeolite: Toward development of a wearable monitor of fat metabolism. Anal Chem, 2015, 87: 7588–7594CrossRefGoogle Scholar
  8. 8.
    Kim J, Valdés-Ramírez G, Bandodkar A J, et al. Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst, 2014, 139: 1632–1636CrossRefGoogle Scholar
  9. 9.
    Banday K M, Pasikanti K K, Chan E C Y, et al. Use of urine volatile organic compounds to discriminate tuberculosis patients from healthy subjects. Anal Chem, 2011, 83: 5526–5534CrossRefGoogle Scholar
  10. 10.
    Alwis K U, Blount B C, Britt A S, et al. Simultaneous analysis of 28 urinary VOC metabolites using ultra high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS). Anal Chim Acta, 2012, 750: 152–160CrossRefGoogle Scholar
  11. 11.
    Tricoli A, Nasiri N, De S. Wearable and miniaturized sensor technologies for personalized and preventive medicine. Adv Funct Mater, 2017, 27: 1605271CrossRefGoogle Scholar
  12. 12.
    Feng F, Zheng J, Qin P, et al. A novel quartz crystal microbalance sensor array based on molecular imprinted polymers for simultaneous detection of clenbuterol and its metabolites. Talanta, 2017, 167: 94–102CrossRefGoogle Scholar
  13. 13.
    Ding B, Kim J, Miyazaki Y, et al. Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection. Senss Actuators B-Chem, 2004, 101: 373–380CrossRefGoogle Scholar
  14. 14.
    Rana L, Gupta R, Kshetrimayum R, et al. Fabrication of surface acoustic wave based wireless NO2 gas sensor. Surf Coatings Tech, 2018, 343: 89–92CrossRefGoogle Scholar
  15. 15.
    Devkota J, Kim K J, Ohodnicki P R, et al. Zeolitic imidazolate framework-coated acoustic sensors for room temperature detection of carbon dioxide and methane. Nanoscale, 2018, 10: 8075–8087CrossRefGoogle Scholar
  16. 16.
    Jildeh Z B, Oberländer J, Kirchner P, et al. Thermocatalytic behavior of manganese (IV) oxide as nanoporous material on the dissociation of a gas mixture containing hydrogen peroxide. Nanomaterials, 2018, 8: 262CrossRefGoogle Scholar
  17. 17.
    Soltis R E. Zirconia-based electrochemical oxygen sensor for accurately determining water vapor concentration. ECS Trans, 2013, 50: 295–300CrossRefGoogle Scholar
  18. 18.
    Ivers-Tiffée E, Härdtl K H, Menesklou W, et al. Principles of solid state oxygen sensors for lean combustion gas control. Electrochim Acta, 2001, 47: 807–814CrossRefGoogle Scholar
  19. 19.
    Fahad H M, Shiraki H, Amani M, et al. Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors. Sci Adv, 2017, 3: e1602557–9CrossRefGoogle Scholar
  20. 20.
    Bohrer F I, Colesniuc C N, Park J, et al. Comparative gas sensing in cobalt, nickel, copper, zinc, and metal-free phthalocyanine chemiresistors. J Am Chem Soc, 2009, 131: 478–485CrossRefGoogle Scholar
  21. 21.
    Marešová E, Tomecek D, Fitl P, et al. Textile chemiresistors with sensitive layers based on polymer ionic liquids: Applicability for detection of toxic gases and chemical warfare agents. Senss Actuators B-Chem, 2018, 266: 830–840CrossRefGoogle Scholar
  22. 22.
    Banica F G. Chemical Sensors and Biosensors: Fundamentals and Applications. John Wiley & Sons, 2012CrossRefGoogle Scholar
  23. 23.
    Dey A. Semiconductor metal oxide gas sensors: A review. Mater Sci Eng-B, 2018, 229: 206–217CrossRefGoogle Scholar
  24. 24.
    Hahn Y B, Ahmad R, Tripathy N. Chemical and biological sensors based on metal oxide nanostructures. Chem Commun, 2012, 48: 10369CrossRefGoogle Scholar
  25. 25.
    Kim H J, Lee J H. Highly sensitive and selective gas sensors using ptype oxide semiconductors: Overview. Senss Actuators B-Chem, 2014, 192: 607–627CrossRefGoogle Scholar
  26. 26.
    Rashid T R, Phan D T, Chung G S. A flexible hydrogen sensor based on Pd nanoparticles decorated ZnO nanorods grown on polyimide tape. Senss Actuators B-Chem, 2013, 185: 777–784CrossRefGoogle Scholar
  27. 27.
    Ye Z, Jiang Y, Tai H, et al. The investigation of reduced graphene oxide@SnO2–polyaniline composite thin films for ammonia detection at room temperature. J Mater Sci-Mater Electron, 2014, 26: 833–841CrossRefGoogle Scholar
  28. 28.
    Singh G, Choudhary A, Haranath D, et al. ZnO decorated luminescent graphene as a potential gas sensor at room temperature. Carbon, 2012, 50: 385–394CrossRefGoogle Scholar
  29. 29.
    Kim J W, Porte Y, Ko K Y, et al. Micropatternable double-faced ZnO nanoflowers for flexible gas sensor. ACS Appl Mater Interfaces, 2017, 9: 32876–32886CrossRefGoogle Scholar
  30. 30.
    Liu J, Li S, Zhang B, et al. Ultrasensitive and low detection limit of nitrogen dioxide gas sensor based on flower-like ZnO hierarchical nanostructure modified by reduced graphene oxide. Senss Actuators B-Chem, 2017, 249: 715–724CrossRefGoogle Scholar
  31. 31.
    Rui K, Wang X, Du M, et al. Dual-function metal–organic framework-based wearable fibers for gas probing and energy storage. ACS Appl Mater Interfaces, 2018, 10: 2837–2842CrossRefGoogle Scholar
  32. 32.
    Lahlalia A, Filipovic L, Selberherr S. Modeling and simulation of novel semiconducting metal oxide gas sensors for wearable devices. IEEE Senss J, 2018, 18: 1960–1970CrossRefGoogle Scholar
  33. 33.
    Park J, Kim J, Kim K, et al. Wearable, wireless gas sensors using highly stretchable and transparent structures of nanowires and graphene. Nanoscale, 2016, 8: 10591–10597CrossRefGoogle Scholar
  34. 34.
    Comini E. Metal oxide nanowire chemical sensors: Innovation and quality of life. Mater Today, 2016, 19: 559–567CrossRefGoogle Scholar
  35. 35.
    Hanf S, Bögözi T, Keiner R, et al. Fast and highly sensitive fiberenhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath. Anal Chem, 2014, 87: 982–988CrossRefGoogle Scholar
  36. 36.
    Mridha S, Basak D. Investigation of a p-CuO/n-ZnO thin film heterojunction for H2 gas-sensor applications. Semicond Sci Technol, 2006, 21: 928–932CrossRefGoogle Scholar
  37. 37.
    Moon H G, Jung Y, Han S D, et al. Chemiresistive electronic nose toward detection of biomarkers in exhaled breath. ACS Appl Mater Interfaces, 2016, 8: 20969–20976CrossRefGoogle Scholar
  38. 38.
    Zampetti E, Pantalei S, Muzyczuk A, et al. A high sensitive NO2 gas sensor based on PEDOT–PSS/TiO2 nanofibres. Senss Actuators BChem, 2013, 176: 390–398CrossRefGoogle Scholar
  39. 39.
    Vreman H J, Stevenson D K, Oh W, et al. Semiportable electrochemical instrument for determining carbon monoxide in breath. Clin Chem, 1994, 40: 1927–1933Google Scholar
  40. 40.
    Bârsan N, Weimar U. Understanding the fundamental principles of metal oxide based gas sensors: The example of CO sensing with SnO2 sensors in the presence of humidity. J Phys Condens Mat, 2003, 15: R813CrossRefGoogle Scholar
  41. 41.
    Chatterjee M, Ge X, Kostov Y, et al. A rate-based transcutaneous CO2 sensor for noninvasive respiration monitoring. Physiol Meas, 2015, 36: 883–894CrossRefGoogle Scholar
  42. 42.
    Gouma P, Kalyanasundaram K, Yun X, et al. Nanosensor and breath analyzer for ammonia detection in exhaled human breath. IEEE Senss J, 2010, 10: 49–53CrossRefGoogle Scholar
  43. 43.
    Sun C, Dutta P K. Selective detection of part per billion concentrations of ammonia using a p–n semiconducting oxide heterostructure. Senss Actuators B-Chem, 2016, 226: 156–169CrossRefGoogle Scholar
  44. 44.
    Arena A, Donato N, Saitta G, et al. Flexible ethanol sensors on glossy paper substrates operating at room temperature. Senss Actuators B-Chem, 2010, 145: 488–494CrossRefGoogle Scholar
  45. 45.
    Zhan S, Li D, Liang S, et al. A novel flexible room temperature ethanol gas sensor based on SnO2 doped poly-diallyldimethylammonium chloride. Sensors, 2013, 13: 4378–4389CrossRefGoogle Scholar
  46. 46.
    Righettoni M, Tricoli A. Toward portable breath acetone analysis for diabetes detection. J Breath Res, 2011, 5: 037109CrossRefGoogle Scholar
  47. 47.
    Righettoni M, Tricoli A, Pratsinis S E. Si:WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal Chem, 2010, 82: 3581–3587CrossRefGoogle Scholar
  48. 48.
    Franke M E, Koplin T J, Simon U. Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small, 2006, 2: 36–50CrossRefGoogle Scholar
  49. 49.
    Barsan N, Koziej D, Weimar U. Metal oxide-based gas sensor research: How to? Senss Actuators B-Chem, 2007, 121: 18–35CrossRefGoogle Scholar
  50. 50.
    Weisz P B. Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis. J Chem Phys, 1953, 21: 1531–1538CrossRefGoogle Scholar
  51. 51.
    Madou M J, Morrison S R. Chemical sensing with solid state devices. Elsevier, 1989Google Scholar
  52. 52.
    Bag A K, Tudu B, Roy J, et al. Optimization of sensor array in electronic nose: A rough set-based approach. IEEE Senss J, 2011, 11: 3001–3008CrossRefGoogle Scholar
  53. 53.
    Miller D R, Akbar S A, Morris P A. Corrigendum to nanoscale metal oxide-based heterojunctions for gas sensing: A review. Senss Actuators B-Chem, 2015, 211: 569–570CrossRefGoogle Scholar
  54. 54.
    Uddin A S M I, Yaqoob U, Phan D T, et al. A novel flexible acetylene gas sensor based on PI/PTFE-supported Ag-loaded vertical ZnO nanorods array. Senss Actuators B-Chem, 2016, 222: 536–543CrossRefGoogle Scholar
  55. 55.
    Comini E. Integration of metal oxide nanowires in flexible gas sensing devices. Sensors, 2013, 13: 10659–10673CrossRefGoogle Scholar
  56. 56.
    Nadarajah A, Word R C, Meiss J, et al. Flexible inorganic nanowire light-emitting diode. Nano Lett, 2008, 8: 534–537CrossRefGoogle Scholar
  57. 57.
    Ahn H, Park J H, Kim S B, et al. Vertically aligned ZnO nanorod sensor on flexible substrate for ethanol gas monitoring. Electrochem Solid-State Lett, 2010, 13: J125CrossRefGoogle Scholar
  58. 58.
    Shim J B, Kim H S, Chang H, et al. Growth and optical properties of aluminum-doped zinc oxide nanostructures on flexible substrates in flexible electronics. J Mater Sci-Mater Electron, 2011, 22: 1350–1356CrossRefGoogle Scholar
  59. 59.
    Manekkathodi A, Lu M Y, Wang C W, et al. Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics. Adv Mater, 2010, 22: 4059–4063CrossRefGoogle Scholar
  60. 60.
    Gullapalli H, Vemuru V S M, Kumar A, et al. Flexible piezoelectric ZnO-paper nanocomposite strain sensor. Small, 2010, 6: 1641–1646CrossRefGoogle Scholar
  61. 61.
    Artzi-Gerlitz R, Benkstein K D, Lahr D L, et al. Fabrication and gas sensing performance of parallel assemblies of metal oxide nanotubes supported by porous aluminum oxide membranes. Senss Actuators B-Chem, 2009, 136: 257–264CrossRefGoogle Scholar
  62. 62.
    Zang W, Nie Y, Zhu D, et al. Core–Shell In2O3/ZnO nanoarray nanogenerator as a self-powered active gas sensor with high H2S sensitivity and selectivity at room temperature. J Phys Chem C, 2014, 118: 9209–9216CrossRefGoogle Scholar
  63. 63.
    Bai S, Tian Y, Cui M, et al. Polyaniline@SnO2 heterojunction loading on flexible PET thin film for detection of NH3 at room temperature. Senss Actuators B-Chem, 2016, 226: 540–547CrossRefGoogle Scholar
  64. 64.
    Yi J, Lee J M, Park W I. Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors. Senss Actuators B-Chem, 2011, 155: 264–269CrossRefGoogle Scholar
  65. 65.
    Zhou J, Xu N, Wang Z. Dissolving behavior and stability of ZnO wires in biofluids: A study on biodegradability and biocompatibility of ZnO nanostructures. Adv Mater, 2006, 18: 2432–2435CrossRefGoogle Scholar
  66. 66.
    Zappa D, Comini E, Zamani R, et al. Preparation of copper oxide nanowire-based conductometric chemical sensors. Senss Actuators B-Chem, 2013, 182: 7–15CrossRefGoogle Scholar
  67. 67.
    Mema R, Yuan L, Du Q, et al. Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper. Chem Phys Lett, 2011, 512: 87–91CrossRefGoogle Scholar
  68. 68.
    Deshpande N G, Gudage Y G, Sharma R, et al. Studies on tin oxideintercalated polyaniline nanocomposite for ammonia gas sensing applications. Senss Actuators B-Chem, 2009, 138: 76–84CrossRefGoogle Scholar
  69. 69.
    Prasad A K, Kubinski D J, Gouma P I. Comparison of sol–gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection. Senss Actuators B-Chem, 2003, 93: 25–30CrossRefGoogle Scholar
  70. 70.
    Yaqoob U, Phan D T, Uddin A S M I, et al. Highly flexible room temperature NO2 sensor based on MWCNTs-WO3 nanoparticles hybrid on a PET substrate. Senss Actuators B-Chem, 2015, 221: 760–768CrossRefGoogle Scholar
  71. 71.
    Karunagaran B, Uthirakumar P, Chung S J, et al. TiO2 thin film gas sensor for monitoring ammonia. Mater Charact, 2007, 58: 680–684CrossRefGoogle Scholar
  72. 72.
    Perillo P M, Rodríguez D F. Low temperature trimethylamine flexible gas sensor based on TiO2 membrane nanotubes. J Alloys Compd, 2016, 657: 765–769CrossRefGoogle Scholar
  73. 73.
    Li S, Lin P, Zhao L, et al. The room temperature gas sensor based on polyaniline@flower-like WO3 nanocomposites and flexible PET substrate for NH3 detection. Senss Actuators B-Chem, 2018, 259: 505–513CrossRefGoogle Scholar
  74. 74.
    Galstyan V, Vomiero A, Comini E, et al. TiO2 nanotubular and nanoporous arrays by electrochemical anodization on different substrates. RSC Adv, 2011, 1: 1038–1044CrossRefGoogle Scholar
  75. 75.
    Galstyan V, Comini E, Vomiero A, et al. Fabrication of pure and Nb–TiO2 nanotubes and their functional properties. J Alloys Compd, 2012, 536: S488–S490CrossRefGoogle Scholar
  76. 76.
    Fan Z, Ho J C, Takahashi T, et al. Toward the development of printable nanowire electronics and sensors. Adv Mater, 2009, 21: 3730–3743CrossRefGoogle Scholar
  77. 77.
    Carlson A, Bowen A M, Huang Y, et al. Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv Mater, 2012, 24: 5284–5318CrossRefGoogle Scholar
  78. 78.
    Gao Y, Cheng H. Assembly of heterogeneous materials for biology and electronics: From bio-inspiration to bio-integration. J Electron Packag, 2017, 139: 020801CrossRefGoogle Scholar
  79. 79.
    Yu Q, Chen F, Zhou H, et al. Design and analysis of magneticassisted transfer printing. J Appl Mech, 2018, 85: 101009CrossRefGoogle Scholar
  80. 80.
    Jeong H Y, Lee D S, Choi H K, et al. Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films. Appl Phys Lett, 2010, 96: 213105CrossRefGoogle Scholar
  81. 81.
    Kumaresan Y, Lee R, Lim N, et al. Extremely flexible indium-gallium-zinc oxide (IGZO) based electronic devices placed on an ultrathin poly(methyl methacrylate) (PMMA) substrate. Adv Electron Mater, 2018, 4: 1800167CrossRefGoogle Scholar
  82. 82.
    Zheng Z Q, Yao J D, Wang B, et al. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices. Sci Rep, 2015, 5: 11070CrossRefGoogle Scholar
  83. 83.
    Choi S J, Choi H J, Koo W T, et al. Metal–organic frameworktemplated PdO-Co3O4 nanocubes functionalized by SWCNTs: Improved NO2 reaction kinetics on flexible heating film. ACS Appl Mater Interfaces, 2017, 9: 40593–40603CrossRefGoogle Scholar
  84. 84.
    McAlpine M C, Ahmad H, Wang D, et al. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat Mater, 2007, 6: 379–384CrossRefGoogle Scholar
  85. 85.
    Geng C, Jiang Y, Yao Y, et al. Well-aligned ZnO nanowire arrays fabricated on silicon substrates. Adv Funct Mater, 2004, 14: 589–594CrossRefGoogle Scholar
  86. 86.
    Duan X, Niu C, Sahi V, et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature, 2003, 425: 274–278CrossRefGoogle Scholar
  87. 87.
    Huang Y, Duan X, Wei Q, et al. Directed assembly of one-dimensional nanostructures into functional networks. Science, 2001, 291: 630–633CrossRefGoogle Scholar
  88. 88.
    Li X, Zhang L, Wang X, et al. Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J Am Chem Soc, 2007, 129: 4890–4891CrossRefGoogle Scholar
  89. 89.
    Jin S, Whang D, McAlpine M C, et al. Scalable interconnection and integration of nanowire devices without registration. Nano Lett, 2004, 4: 915–919CrossRefGoogle Scholar
  90. 90.
    Tao A, Kim F, Hess C, et al. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett, 2003, 3: 1229–1233CrossRefGoogle Scholar
  91. 91.
    Yu G, Cao A, Lieber C M. Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat Nanotech, 2007, 2: 372–377CrossRefGoogle Scholar
  92. 92.
    Dong L, Bush J, Chirayos V, et al. Dielectrophoretically controlled fabrication of single-crystal nickel silicide nanowire interconnects. Nano Lett, 2005, 5: 2112–2115CrossRefGoogle Scholar
  93. 93.
    Englander O, Christensen D, Kim J, et al. Electric-field assisted growth and self-assembly of intrinsic silicon nanowires. Nano Lett, 2005, 5: 705–708CrossRefGoogle Scholar
  94. 94.
    Takahashi T, Takei K, Ho J C, et al. Monolayer resist for patterned contact printing of aligned nanowire arrays. J Am Chem Soc, 2009, 131: 2102–2103CrossRefGoogle Scholar
  95. 95.
    Fan Z, Ho J C, Jacobson Z A, et al. Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. Proc Natl Acad Sci USA, 2008, 105: 11066–11070CrossRefGoogle Scholar
  96. 96.
    Fan Z, Ho J C, Jacobson Z A, et al. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett, 2008, 8: 20–25CrossRefGoogle Scholar
  97. 97.
    Yao J, Yan H, Lieber C M. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat Nanotech, 2013, 8: 329–335CrossRefGoogle Scholar
  98. 98.
    Ishikawa F N, Chang H K, Ryu K, et al. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano, 2009, 3: 73–79CrossRefGoogle Scholar
  99. 99.
    Chen P C, Sukcharoenchoke S, Ryu K, et al. 2,4,6-Trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires. Adv Mater, 2010, 22: 1900–1904CrossRefGoogle Scholar
  100. 100.
    Huang H, Liang B, Liu Z, et al. Metal oxide nanowire transistors. J Mater Chem, 2012, 22: 13428–13445CrossRefGoogle Scholar
  101. 101.
    Lim Z H, Chia Z X, Kevin M, et al. A facile approach towards ZnO nanorods conductive textile for room temperature multifunctional sensors. Senss Actuators B-Chem, 2010, 151: 121–126CrossRefGoogle Scholar
  102. 102.
    Kinkeldei T, Zysset C, Münzenrieder N, et al. An electronic nose on flexible substrates integrated into a smart textile. Senss Actuators BChem, 2012, 174: 81–86CrossRefGoogle Scholar
  103. 103.
    Subbiah D K, Mani G K, Babu K J, et al. Nanostructured ZnO on cotton fabrics–A novel flexible gas sensor & UV filter. J Cleaner Production, 2018, 194: 372–382CrossRefGoogle Scholar
  104. 104.
    Yang A, Tao X, Wang R, et al. Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nanofibers. Appl Phys Lett, 2007, 91: 133110CrossRefGoogle Scholar
  105. 105.
    Tonezzer M, Lacerda R G. Zinc oxide nanowires on carbon microfiber as flexible gas sensor. Physica E-Low-dimensional Syst NanoStruct, 2012, 44: 1098–1102CrossRefGoogle Scholar
  106. 106.
    Kim D H, Rogers J A. Stretchable electronics: Materials strategies and devices. Adv Mater, 2008, 20: 4887–4892CrossRefGoogle Scholar
  107. 107.
    Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327: 1603–1607CrossRefGoogle Scholar
  108. 108.
    Cheng H, Yi N. Dissolvable tattoo sensors: From science fiction to a viable technology. Phys Scr, 2017, 92: 013001CrossRefGoogle Scholar
  109. 109.
    Zhu J, Dexheimer M, Cheng H. Reconfigurable systems for multifunctional electronics. npj Flex Electron, 2017, 1: 8CrossRefGoogle Scholar
  110. 110.
    Khang D Y, Jiang H, Huang Y, et al. A stretchable form of singlecrystal silicon for high-performance electronics on rubber substrates. Science, 2006, 311: 208–212CrossRefGoogle Scholar
  111. 111.
    Cheng H, Song J. A simply analytic study of buckled thin films on compliant substrates. J Appl Mech, 2013, 81: 024501CrossRefGoogle Scholar
  112. 112.
    Cheng H, Zhang Y, Hwang K C, et al. Buckling of a stiff thin film on a pre-strained bi-layer substrate. Int J Solids Struct, 2014, 51: 3113–3118CrossRefGoogle Scholar
  113. 113.
    Kim D H, Song J, Mook Choi W, et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad Sci USA, 2008, 105: 18675–18680CrossRefGoogle Scholar
  114. 114.
    Xu S, Zhang Y, Cho J, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun, 2013, 4: 1543CrossRefGoogle Scholar
  115. 115.
    Zhang Y, Fu H, Su Y, et al. Mechanics of ultra-stretchable selfsimilar serpentine interconnects. Acta Mater, 2013, 61: 7816–7827CrossRefGoogle Scholar
  116. 116.
    Yu Q, Chen F, Li M, et al. Buckling analysis of stiff thin films suspended on a substrate with tripod surface relief structure. Appl Phys Lett, 2017, 111: 121904CrossRefGoogle Scholar
  117. 117.
    Cheng H, Wu J, Li M, et al. An analytical model of strain isolation for stretchable and flexible electronics. Appl Phys Lett, 2011, 98: 061902CrossRefGoogle Scholar
  118. 118.
    Lee J, Wu J, Shi M, et al. Stretchable GaAs photovoltaics with designs that enable high areal coverage. Adv Mater, 2011, 23: 986–991CrossRefGoogle Scholar
  119. 119.
    Liu Z, Cheng H, Wu J. Mechanics of solar module on structured substrates. J Appl Mech, 2014, 81: 064502CrossRefGoogle Scholar
  120. 120.
    Kang D, Pikhitsa P V, Choi Y W, et al. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature, 2014, 516: 222–226CrossRefGoogle Scholar
  121. 121.
    Liu Z, Yu M, Lv J, et al. Dispersed, porous nanoislands landing on stretchable nanocrack gold films: Maintenance of stretchability and controllable impedance. ACS Appl Mater Interfaces, 2014, 6: 13487–13495CrossRefGoogle Scholar
  122. 122.
    Won Y, Kim A, Yang W, et al. A highly stretchable, helical copper nanowire conductor exhibiting a stretchability of 700%. NPG Asia Mater, 2014, 6: e132CrossRefGoogle Scholar
  123. 123.
    Xu S, Yan Z, Jang K I, et al. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 2015, 347: 154–159CrossRefGoogle Scholar
  124. 124.
    Song Z, Ma T, Tang R, et al. Origami lithium-ion batteries. Nat Commun, 2014, 5: 3140CrossRefGoogle Scholar
  125. 125.
    Yan Z, Zhang F, Wang J, et al. Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials. Adv Funct Mater, 2016, 26: 2629–2639CrossRefGoogle Scholar
  126. 126.
    Blees M K, Barnard A W, Rose P A, et al. Graphene kirigami. Nature, 2015, 524: 204–207CrossRefGoogle Scholar
  127. 127.
    Song Z, Wang X, Lv C, et al. Kirigami-based stretchable lithium-ion batteries. Sci Rep, 2015, 5: 10988CrossRefGoogle Scholar
  128. 128.
    Park J, Lee Y, Hong J, et al. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano, 2014, 8: 12020–12029CrossRefGoogle Scholar
  129. 129.
    Ha M, Lim S, Park J, et al. Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressuresensitive electronic skins. Adv Funct Mater, 2015, 25: 2841–2849CrossRefGoogle Scholar
  130. 130.
    Song Z, Huang Z, Liu J, et al. Fully stretchable and humidity-resistant quantum dot gas sensors. ACS Sens, 2018, 3: 1048–1055CrossRefGoogle Scholar
  131. 131.
    Song Z, Xu S, Liu J, et al. Enhanced catalytic activity of SnO2 quantum dot films employing atomic ligand-exchange strategy for fast response H2S gas sensors. Senss Actuators B-Chem, 2018, 271: 147–156CrossRefGoogle Scholar
  132. 132.
    Kim D, Kim D, Lee H, et al. Body-attachable and stretchable multisensors integrated with wirelessly rechargeable energy storage devices. Adv Mater, 2016, 28: 748–756CrossRefGoogle Scholar
  133. 133.
    Gutruf P, Zeller E, Walia S, et al. Stretchable and tunable microtectonic ZnO-based sensors and photonics. Small, 2015, 11: 4532–4539CrossRefGoogle Scholar
  134. 134.
    Liao X, Liao Q, Zhang Z, et al. A highly stretchable ZnO@fiberbased multifunctional nanosensor for strain/temperature/UV detection. Adv Funct Mater, 2016, 26: 3074–3081CrossRefGoogle Scholar
  135. 135.
    Gutruf P, Shah C M, Walia S, et al. Transparent functional oxide stretchable electronics: Micro-tectonics enabled high strain electrodes. NPG Asia Mater, 2013, 5Google Scholar
  136. 136.
    Mishra Y K, Kaps S, Schuchardt A, et al. Fabrication of macroscopically flexible and highly porous 3D semiconductor networks from interpenetrating nanostructures by a simple flame transport approach. Part Part Syst Charact, 2013, 30: 775–783CrossRefGoogle Scholar
  137. 137.
    Paulowicz I, Hrkac V, Kaps S, et al. Three-dimensional SnO2 nanowire networks for multifunctional applications: From high-temperature stretchable ceramics to ultraresponsive sensors. Adv Electron Mater, 2015, 1: 1500081CrossRefGoogle Scholar
  138. 138.
    Zhang R Q, Lifshitz Y, Lee S T. Oxide-assisted growth of semiconducting nanowires. Adv Mater, 2003, 15: 635–640CrossRefGoogle Scholar
  139. 139.
    Wang Z L. Nanobelts, nanowires, and nanodiskettes of semiconducting oxides—From materials to nanodevices. Adv Mater, 2003, 15: 432–436CrossRefGoogle Scholar
  140. 140.
    Liu H, Li M, Voznyy O, et al. Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids. Adv Mater, 2014, 26: 2718–2724CrossRefGoogle Scholar
  141. 141.
    Song Z, Wei Z, Wang B, et al. Sensitive room-temperature H2S gas sensors employing SnO2 quantum wire/reduced graphene oxide nanocomposites. Chem Mater, 2016, 28: 1205–1212CrossRefGoogle Scholar
  142. 142.
    Prades J D, Jimenez-Diaz R, Hernandez-Ramirez F, et al. Harnessing self-heating in nanowires for energy efficient, fully autonomous and ultra-fast gas sensors. Senss Actuators B-Chem, 2010, 144: 1–5CrossRefGoogle Scholar
  143. 143.
    Prades J D, Jimenez-Diaz R, Hernandez-Ramirez F, et al. Ultralow power consumption gas sensors based on self-heated individual nanowires. Appl Phys Lett, 2008, 93: 123110CrossRefGoogle Scholar
  144. 144.
    Prades J D, Jimenez-Diaz R, Hernandez-Ramirez F, et al. Equivalence between thermal and room temperature UV light-modulated responses of gas sensors based on individual SnO2 nanowires. Senss Actuators B-Chem, 2009, 140: 337–341CrossRefGoogle Scholar
  145. 145.
    Law M, Kind H, Messer B, et al. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew Chem Int Ed, 2002, 41: 2405–2408CrossRefGoogle Scholar
  146. 146.
    Comini E, Faglia G, Sberveglieri G. UV light activation of tin oxide thin films for NO2 sensing at low temperatures. Senss Actuators BChem, 2001, 78: 73–77CrossRefGoogle Scholar
  147. 147.
    Comini E, Ottini L, Faglia G, et al. light activation of tin oxide thin films for UV activation for CO monitoring. IEEE Senss J, 2004, 4: 17–20CrossRefGoogle Scholar
  148. 148.
    Comini E, Cristalli A, Faglia G, et al. Light enhanced gas sensing properties of indium oxide and tin dioxide sensors. Senss Actuators B-Chem, 2000, 65: 260–263CrossRefGoogle Scholar
  149. 149.
    de Lacy Costello B P J, Ewen R J, Ratcliffe N M, et al. Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles. Senss Actuators B-Chem, 2008, 134: 945–952CrossRefGoogle Scholar
  150. 150.
    Tien N T, Jeon S, Kim D I, et al. A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv Mater, 2014, 26: 796–804CrossRefGoogle Scholar
  151. 151.
    Peng G, Tisch U, Adams O, et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotech, 2009, 4: 669–673CrossRefGoogle Scholar
  152. 152.
    Kim N H, Choi S J, Yang D J, et al. Highly sensitive and selective hydrogen sulfide and toluene sensors using Pd functionalized WO3 nanofibers for potential diagnosis of halitosis and lung cancer. Senss Actuators B-Chem, 2014, 193: 574–581CrossRefGoogle Scholar
  153. 153.
    Lai X, Cao K, Shen G, et al. Ordered mesoporous NiFe2O4 with ultrathin framework for low-ppb toluene sensing. Sci Bull, 2018, 63: 187–193CrossRefGoogle Scholar
  154. 154.
    Oprea A, Courbat J, Briand D, et al. Environmental monitoring with a multisensor platform on polyimide foil. Senss Actuators B-Chem, 2012, 171–172: 190–197CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.School of Physical Science and TechnologyShanghaiTech UniversityShanghaiChina
  3. 3.Materials Research Institutethe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations