Advertisement

Regulating wrinkling patterns by periodic surface stiffness in film-substrate structures

  • Bo LiEmail author
  • ChongQing Zeng
  • SiFan Yin
  • XiQiao Feng
Article Special Topic: Current Progress in Solid Mechanics and Physical Mechanics
  • 9 Downloads

Abstract

Surface wrinkling of materials holds promise for important applications in diverse fields such as multifunctional surfaces and biomedical engineering. For these applications, it is of interest to attain various surface wrinkles with tunable wavelengths and amplitudes. Through a combination of experiments and numerical simulations, we here propose a method to regulate the wrinkling patterns in a film-substrate system by introducing periodic surface stiffness, which is generated through sequential specified ultraviolet-ozone (UVO) treatments. Both experiments and numerical simulations demonstrate that the proposed technique can produce various patterns with wide, tunable geometrical features and anisotropy. The effects of surface stiffness distribution, the exposure durations of UVO-treatments, and the loading biaxiality are examined on the generated surface patterns.

film-substrate system wrinkling surface patterns stiffness modification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refferences

  1. 1.
    Feng X Q, Cao Y P, Li B. Surface Wrinkling Mechanics of Soft Materials. Beijing: Science Press, 2017Google Scholar
  2. 2.
    Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327: 1603–1607CrossRefGoogle Scholar
  3. 3.
    Suo Z. Mechanics of stretchable electronics and soft machines. MRS Bull, 2012, 37: 218–225CrossRefGoogle Scholar
  4. 4.
    Chen A, Lieu D K, Freschauf L, et al. Shrink-film configurable multiscale wrinkles for functional alignment of human embryonic stem cells and their cardiac derivatives. Adv Mater, 2011, 23: 5785–5791CrossRefGoogle Scholar
  5. 5.
    Harrison C, Stafford C M, Zhang W, et al. Sinusoidal phase grating created by a tunably buckled surface. Appl Phys Lett, 2004, 85: 4016–4018CrossRefGoogle Scholar
  6. 6.
    Nie Z, Kumacheva E. Patterning surfaces with functional polymers. Nat Mater, 2008, 7: 277–290CrossRefGoogle Scholar
  7. 7.
    Ghosh A, Bandyopadhyay D, Sharma A. Electric field mediated elastic contact lithography of thin viscoelastic films for miniaturized and multiscale patterns. Soft Matter, 2018, 14: 3963–3977CrossRefGoogle Scholar
  8. 8.
    Li B, Cao Y P, Feng X Q, et al. Mechanics of morphological instabilities and surface wrinkling in soft materials: A review. Soft Matter, 2012, 8: 5728–5745CrossRefGoogle Scholar
  9. 9.
    Lin G, Chandrasekaran P, Lv C, et al. Self-similar hierarchical wrinkles as a potential multifunctional smart window with simultaneously tunable transparency, structural color, and droplet transport. ACS Appl Mater Interfaces, 2017, 9: 26510–26517CrossRefGoogle Scholar
  10. 10.
    Wang Q, Zhao X. Beyond wrinkles: Multimodal surface instabilities for multifunctional patterning. MRS Bull, 2016, 41: 115–122CrossRefGoogle Scholar
  11. 11.
    Wang J W, Li B, Cao Y P, et al. Surface wrinkling patterns of filmsubstrate systems with a structured interface. J Appl Mech, 2015, 82: 051009CrossRefGoogle Scholar
  12. 12.
    Yang J, Damle S, Maiti S, et al. Stretching-induced wrinkling in plastic-rubber composites. Soft Matter, 2017, 13: 776–787CrossRefGoogle Scholar
  13. 13.
    Audoly B, Boudaoud A. Buckling of a stiff film bound to a compliant substrate—Part I. J Mech Phys Solids, 2008, 56: 2401–2421MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Li M, Qin H, Liu J, et al. Mechanism of three-dimensional surface wrinkle manipulation on a compliant substrate. J Appl Mech, 2018, 85: 071004CrossRefGoogle Scholar
  15. 15.
    Song J. Herringbone buckling patterns of anisotropic thin films on elastomeric substrates. Appl Phys Lett, 2010, 96: 051913CrossRefGoogle Scholar
  16. 16.
    Holland M A, Li B, Feng X Q, et al. Instabilities of soft films on compliant substrates. J Mech Phys Solids, 2017, 98: 350–365MathSciNetCrossRefGoogle Scholar
  17. 17.
    Li B, Cao Y P, Feng X Q, et al. Surface wrinkling of mucosa induced by volumetric growth: Theory, simulation and experiment. J Mech Phys Solids, 2011, 59: 758–774MathSciNetCrossRefGoogle Scholar
  18. 18.
    Yin S F, Li B, Cao Y P, et al. Surface wrinkling of anisotropic films bonded on a compliant substrate. Int J Solids Struct, 2018, 141–142: 219–231CrossRefGoogle Scholar
  19. 19.
    Zhang C, Li B, Huang X, et al. Morphomechanics of bacterial biofilms undergoing anisotropic differential growth. Appl Phys Lett, 2016, 109: 143701CrossRefGoogle Scholar
  20. 20.
    Wang C, Kang J, Xue Z, et al. Buckling induced delamination and microflow analysis of film/substrate system. Composite Struct, 2017, 161: 8–14CrossRefGoogle Scholar
  21. 21.
    Velankar S S, Lai V, Vaia R A. Swelling-induced delamination causes folding of surface-tethered polymer gels. ACS Appl Mater Interfaces, 2012, 4: 24–29CrossRefGoogle Scholar
  22. 22.
    Ni Y, Yu S, Jiang H, et al. The shape of telephone cord blisters. Nat Commun, 2017, 8: 14138CrossRefGoogle Scholar
  23. 23.
    Whitesides G M, Bowden N, Brittain S, et al. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature, 1998, 393: 146–149CrossRefGoogle Scholar
  24. 24.
    Yin J, Yagüe J L, Eggenspieler D, et al. Deterministic order in surface micro-topologies through sequential wrinkling. Adv Mater, 2012, 24: 5441–5446CrossRefGoogle Scholar
  25. 25.
    Brojan M, Terwagne D, Lagrange R, et al. Wrinkling crystallography on spherical surfaces. Proc Natl Acad Sci USA, 2015, 112: 14–19CrossRefGoogle Scholar
  26. 26.
    Stoop N, Lagrange R, Terwagne D, et al. Curvature-induced symmetry breaking determines elastic surface patterns. Nat Mater, 2015, 14: 337–342CrossRefGoogle Scholar
  27. 27.
    Huang X, Li B, Hong W, et al. Effects of tension-compression asymmetry on the surface wrinkling of film-substrate systems. J Mech Phys Solids, 2016, 94: 88–104MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhao R, Zhao X. Multimodal surface instabilities in curved filmsubstrate structures. J Appl Mech, 2017, 84: 081001CrossRefGoogle Scholar
  29. 29.
    Razavi M J, Zhang T, Li X, et al. Role of mechanical factors in cortical folding development. Phys Rev E, 2015, 92: 032701CrossRefGoogle Scholar
  30. 30.
    Brau F, Vandeparre H, Sabbah A, et al. Multiple-length-scale elastic instability mimics parametric resonance of nonlinear oscillators. Nat Phys, 2011, 7: 56–60CrossRefGoogle Scholar
  31. 31.
    Cai S, Breid D, Crosby A J, et al. Periodic patterns and energy states of buckled films on compliant substrates. J Mech Phys Solids, 2011, 59: 1094–1114MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Li B, Jia F, Cao Y P, et al. Surface wrinkling patterns on a core-shell soft sphere. Phys Rev Lett, 2011, 106: 234301CrossRefGoogle Scholar
  33. 33.
    Zhao Y, Cao Y, Feng X Q, et al. Axial compression-induced wrinkles on a core-shell soft cylinder: Theoretical analysis, simulations and experiments. J Mech Phys Solids, 2014, 73: 212–227MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Yang Y, Dai H H, Xu F, et al. Pattern transitions in a soft cylindrical shell. Phys Rev Lett, 2018, 120: 215503CrossRefGoogle Scholar
  35. 35.
    Gabardo C M, Hosseini A, Soleymani L. A new wrinkle in biosensors: Wrinkled electrodes could be a breakthrough for lab-on-a-chip devices.. IEEE Nanotechnol Mag, 2016, 10: 6–18CrossRefGoogle Scholar
  36. 36.
    Wang J, Li B, Cao Y P, et al. Wrinkling micropatterns regulated by a hard skin layer with a periodic stiffness distribution on a soft material. Appl Phys Lett, 2016, 108: 021903CrossRefGoogle Scholar
  37. 37.
    Huang Z Y, Hong W, Suo Z. Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J Mech Phys Solids, 2005, 53: 2101–2118MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Jiang H, Khang D Y, Song J, et al. Finite deformation mechanics in buckled thin films on compliant supports. Proc Natl Acad Sci USA, 2007, 104: 15607–15612CrossRefGoogle Scholar
  39. 39.
    Zhao Y, Han X, Li G, et al. Effect of lateral dimension on the surface wrinkling of a thin film on compliant substrate induced by differential growth/swelling. J Mech Phys Solids, 2015, 83: 129–145MathSciNetCrossRefGoogle Scholar
  40. 40.
    Bae H J, Bae S, Yoon J, et al. Self-organization of maze-like structures via guided wrinkling. Sci Adv, 2017, 3: e1700071CrossRefGoogle Scholar
  41. 41.
    Ouchi T, Yang J, Suo Z, et al. Effects ofstifffilm pattern geometry on surface buckling instabilities of elastic bilayers. ACS Appl Mater Interfaces, 2018, 10: 23406–23413CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Biomechanics and Medical Engineering, AML, Department of Engineering MechanicsTsinghua UniversityBeijingChina

Personalised recommendations