Nanoimprint lithography for the manufacturing of flexible electronics

  • JinYou ShaoEmail author
  • XiaoLiang Chen
  • XiangMing Li
  • HongMiao Tian
  • ChunHui Wang
  • BingHeng Lu
Review Special Topic: Flexible Electronics Manufacturing


Flexible electronics have received considerable attention in academies and industries for their promising applications in enormous fields, such as flexible displays, wearable sensors, artificial skins, and flexible energy devices. Challenges remain in developing a flexible and scalable manufacturing method to facilitate the fabrication of multi-functional structures in a flexible electronic system. Nanoimprint lithography is a high resolution and low-cost approach to fabricate nanostructures over a large area. This paper reviews recent progress of nanoimprint lithography and its applications in flexible electronics. The basic principles, classification, research focus, and critical issues of nanoimprint lithography are elaborated. Then, the advantages of nanoimprint lithography are demonstrated in several typical applications related to flexible electronics, including conductive films, optoelectronic devices, flexible sensors, energy harvesting and storage devices, and bioinspired electronic devices. Finally, the challenges and perspectives of nanoimprint lithography in flexible electronic systems are discussed.


nanoimprint lithography manufacturing flexible electronics nanostructures sensors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dong W, Xiao L, Hu W, et al. Wearable human-machine interface based on PVDF piezoelectric sensor. Trans Institute Measurement Control, 2016, 39: 398–403CrossRefGoogle Scholar
  2. 2.
    Wang X, Dong L, Zhang H, et al. Recent progress in electronic skin. Adv Sci, 2015, 2: 1500169CrossRefGoogle Scholar
  3. 3.
    Liu Y, Pharr M, Salvatore G A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano, 2017, 11: 9614–9635CrossRefGoogle Scholar
  4. 4.
    Cao Y, Li T, Gu Y, et al. Fingerprint-inspired flexible tactile sensor for accurately discerning surface texture. Small, 2018, 14: 1703902CrossRefGoogle Scholar
  5. 5.
    Huang Y A, Ding Y, Bian J, et al. Hyper-stretchable self-powered sensors based on electrohydrodynamically printed, self-similar piezoelectric nano/microfibers. Nano Energy, 2017, 40: 432–439CrossRefGoogle Scholar
  6. 6.
    Ouyang H, Tian J, Sun G, et al. Self-powered pulse sensor for antidiastole of cardiovascular disease. Adv Mater, 2017, 29: 1703456CrossRefGoogle Scholar
  7. 7.
    Gong S, Schwalb W, Wang Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun, 2014, 5: 3132CrossRefGoogle Scholar
  8. 8.
    Chi C, Sun X, Xue N, et al. Recent progress in technologies for tactile sensors. Sensors, 2018, 18: 948CrossRefGoogle Scholar
  9. 9.
    Shi M, Wu H, Zhang J, et al. Self-powered wireless smart patch for healthcare monitoring. Nano Energy, 2017, 32: 479–487CrossRefGoogle Scholar
  10. 10.
    Chen X, Song Y, Su Z, et al. Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring. Nano Energy, 2017, 38: 43–50CrossRefGoogle Scholar
  11. 11.
    Xiao H, Wu Z S, Chen L, et al. One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density. ACS Nano, 2017, 11: 7284–7292CrossRefGoogle Scholar
  12. 12.
    Wu Z S, Parvez K, Winter A, et al. Layer-by-layer assembled heteroatom- doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors. Adv Mater, 2014, 26: 4552–4558CrossRefGoogle Scholar
  13. 13.
    Ramuz M, Tee B C K, Tok J B H, et al. Transparent, optical, pressure- sensitive artificial skin for large-area stretchable electronics. Adv Mater, 2012, 24: 3223–3227CrossRefGoogle Scholar
  14. 14.
    Xu S, Zhang Y, Cho J, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun, 2013, 4: 1543CrossRefGoogle Scholar
  15. 15.
    Wu H, Huang Y A, Xu F, et al. Energy harvesters for wearable and stretchable electronics: From flexibility to stretchability. Adv Mater, 2016, 28: 9881–9919CrossRefGoogle Scholar
  16. 16.
    Duan Y Q, Huang Y A, Yin Z P, et al. Non-wrinkled, highly stretchable piezoelectric devices by electrohydrodynamic direct-writing. Nanoscale, 2014, 6: 3289–3295CrossRefGoogle Scholar
  17. 17.
    Huang Y A, Duan Y, Ding Y, et al. Versatile, kinetically controlled, high precision electrohydrodynamic writing of micro/nanofibers. Sci Rep, 2014, 4: 5949CrossRefGoogle Scholar
  18. 18.
    Chun S, Choi Y, Suh D I, et al. A tactile sensor using single layer graphene for surface texture recognition. Nanoscale, 2017, 9: 10248–10255CrossRefGoogle Scholar
  19. 19.
    Chen H, Miao L, Su Z, et al. Fingertip-inspired electronic skin based on triboelectric sliding sensing and porous piezoresistive pressure detection. Nano Energy, 2017, 40: 65–72CrossRefGoogle Scholar
  20. 20.
    Ding Y, Zhu C, Liu J, et al. Flexible small-channel thin-film transistors by electrohydrodynamic lithography. Nanoscale, 2017, 9: 19050–19057CrossRefGoogle Scholar
  21. 21.
    Guo L J. Recent progress in nanoimprint technology and its applications. J Phys D-Appl Phys, 2004, 37: R123–R141CrossRefGoogle Scholar
  22. 22.
    Yu C C, Chen H L. Nanoimprint technology for patterning functional materials and its applications. MicroElectron Eng, 2015, 132: 98–119CrossRefGoogle Scholar
  23. 23.
    Yousef H, Boukallel M, Althoefer K. Tactile sensing for dexterous in-hand manipulation in robotics—A review. Senss Actuators APhys, 2011, 167: 171–187CrossRefGoogle Scholar
  24. 24.
    Huang Y A, Dong W, Huang T, et al. Self-similar design for stretchable wireless LC strain sensors. Senss Actuators A-Phys, 2015, 224: 36–42CrossRefGoogle Scholar
  25. 25.
    Sun H. Recent progress in low temperature nanoimprint lithography. Microsyst Technol, 2014, 21: 1–7CrossRefGoogle Scholar
  26. 26.
    Zhao Q, Wang W, Shao J, et al. Nanoscale electrodes for flexible electronics by swelling controlled cracking. Adv Mater, 2016, 28: 6337–6344CrossRefGoogle Scholar
  27. 27.
    Yong J, Chen F, Yang Q, et al. Nepenthes inspired design of selfrepairing omniphobic slippery liquid infused porous surface (SLIPS) by femtosecond laser direct writing. Adv Mater Interfaces, 2017, 4: 1700552CrossRefGoogle Scholar
  28. 28.
    Zimmermann S T, Balkenende D W R, Lavrenova A, et al. Nanopatterning of a stimuli-responsive fluorescent supramolecular polymer by thermal scanning probe lithography. ACS Appl Mater Interfaces, 2017, 9: 41454–41461CrossRefGoogle Scholar
  29. 29.
    Liu H, Kong W, Liu K, et al. Deep subwavelength interference lithography with tunable pattern period based on bulk plasmon polaritons. Opt Express, 2017, 25: 20511–20521CrossRefGoogle Scholar
  30. 30.
    Flannigan D J, Suslick K S. Plasma formation and temperature measurement during single-bubble cavitation. Nature, 2005, 434: 52–55CrossRefGoogle Scholar
  31. 31.
    Kang K, Cho Y, Yu K J. Novel nano-materials and nano-fabrication techniques for flexible electronic systems. Micromachines, 2018, 9: 263CrossRefGoogle Scholar
  32. 32.
    Wang C, Shao J, Tian H, et al. Step-controllable electric-field-assisted nanoimprint lithography for uneven large-area substrates. ACS Nano, 2016, 10: 4354–4363CrossRefGoogle Scholar
  33. 33.
    Chou S Y. Nanoimprint lithography. J Vacuum Sci Tech B: Microelectron Nanometer Struct, 1996, 14: 4129CrossRefGoogle Scholar
  34. 34.
    Qiao W, Huang W, Liu Y, et al. Toward scalable flexible nanomanufacturing for photonic structures and devices. Adv Mater, 2016, 28: 10353–10380CrossRefGoogle Scholar
  35. 35.
    Li X, Ding Y, Shao J, et al. Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes. Adv Mater, 2012, 24: OP165–OP169Google Scholar
  36. 36.
    Kang M G, Kim M S, Kim J, et al. Organic solar cells using nanoimprinted transparent metal electrodes. Adv Mater, 2008, 20: 4408–4413CrossRefGoogle Scholar
  37. 37.
    Yu J S, Jung G H, Jo J, et al. Transparent conductive film with printable embedded patterns for organic solar cells. Sol Energy Mater Sol Cells, 2013, 109: 142–147CrossRefGoogle Scholar
  38. 38.
    Choi Y M, Jo J, Lee E, et al. Reverse offset printing of transparent metal mesh electrodes using an imprinted disposable cliché. Int J Precis Eng Manuf, 2015, 16: 2347–2352CrossRefGoogle Scholar
  39. 39.
    Schumm B, Wisser F M, Mondin G, et al. Semi-transparent silver electrodes for flexible electronic devices prepared by nanoimprint lithography. J Mater Chem C, 2013, 1: 638–645CrossRefGoogle Scholar
  40. 40.
    Xiang H Y, Li Y Q, Meng S S, et al. Extremely efficient transparent flexible organic light-emitting diodes with nanostructured composite electrodes. Adv Opt Mater, 2018, 6: 1800831CrossRefGoogle Scholar
  41. 41.
    Song Y M, Xie Y, Malyarchuk V, et al. Digital cameras with designs inspired by the arthropod eye. Nature, 2013, 497: 95–99CrossRefGoogle Scholar
  42. 42.
    Shao J, Ding Y, Wang W, et al. Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling. Small, 2014, 10: 2595–2601CrossRefGoogle Scholar
  43. 43.
    Li X, Tian H, Shao J, et al. Decreasing the saturated contact angle in electrowetting-on-dielectrics by controlling the charge trapping at liquid-solid interfaces. Adv Funct Mater, 2016, 26: 2994–3002CrossRefGoogle Scholar
  44. 44.
    Park H, Jeong Y R, Yun J, et al. Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and au-coated polydimethylsiloxane micropillars. ACS Nano, 2015, 9: 9974–9985CrossRefGoogle Scholar
  45. 45.
    Pang C, Lee G Y, Kim T I, et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater, 2012, 11: 795–801CrossRefGoogle Scholar
  46. 46.
    Nie B, Li X, Shao J, et al. Flexible and transparent strain sensors with embedded multiwalled carbon nanotubes meshes. ACS Appl Mater Interfaces, 2017, 9: 40681–40689CrossRefGoogle Scholar
  47. 47.
    Mannsfeld S C B, Tee B C K, Stoltenberg R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater, 2010, 9: 859–864CrossRefGoogle Scholar
  48. 48.
    Chen X, Shao J, An N, et al. Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs. J Mater Chem C, 2015, 3: 11806–11814CrossRefGoogle Scholar
  49. 49.
    Chen X, Tian H, Li X, et al. A high performance P(VDF-TrFE) nanogenerator with self-connected and vertically integrated fibers by patterned EHD pulling. Nanoscale, 2015, 7: 11536–11544CrossRefGoogle Scholar
  50. 50.
    Fan F R, Lin L, Zhu G, et al. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett, 2012, 12: 3109–3114CrossRefGoogle Scholar
  51. 51.
    Li X, Xu C, Wang C, et al. Improved triboelectrification effect by bendable and slidable fish-scale-like microstructures. Nano Energy, 2017, 40: 646–654CrossRefGoogle Scholar
  52. 52.
    Kim S K, Koo H J, Lee A, et al. Selective wetting-induced microelectrode patterning for flexible micro-supercapacitors. Adv Mater, 2014, 26: 5108–5112CrossRefGoogle Scholar
  53. 53.
    Li X, Shao J, Kim S K, et al. High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes. Nat Commun, 2018, 9: 2578CrossRefGoogle Scholar
  54. 54.
    Wang Y, Hu H, Shao J, et al. Fabrication of well-defined mushroomshaped structures for biomimetic dry adhesive by conventional photolithography and molding. ACS Appl Mater Interfaces, 2014, 6: 2213–2218CrossRefGoogle Scholar
  55. 55.
    Hu H, Tian H, Li X, et al. Biomimetic mushroom-shaped microfibers for dry adhesives by electrically induced polymer deformation. ACS Appl Mater Interfaces, 2014, 6: 14167–14173CrossRefGoogle Scholar
  56. 56.
    Hu H, Tian H, Shao J, et al. Discretely supported dry adhesive film inspired by biological bending behavior for enhanced performance on a rough surface. ACS Appl Mater Interfaces, 2017, 9: 7752–7760CrossRefGoogle Scholar
  57. 57.
    Kim T, Park J, Sohn J, et al. Bioinspired, highly stretchable, and conductive dry adhesives based on 1D-2D hybrid carbon nanocomposites for all-in-one ECG electrodes. ACS Nano, 2016, 10: 4770–4778CrossRefGoogle Scholar
  58. 58.
    Drotlef D M, Amjadi M, Yunusa M, et al. Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors. Adv Mater, 2017, 29: 1701353CrossRefGoogle Scholar
  59. 59.
    Pang C, Koo J H, Nguyen A, et al. Highly skin-conformal microhairy sensor for pulse signal amplification. Adv Mater, 2015, 27: 634–640CrossRefGoogle Scholar
  60. 60.
    Rowland H D, Sun A C, Schunk P R, et al. Impact of polymer film thickness and cavity size on polymer flow during embossing: Toward process design rules for nanoimprint lithography. J Micromech Microeng, 2005, 15: 2414–2425CrossRefGoogle Scholar
  61. 61.
    Chou S Y. Sub-10 nm imprint lithography and applications. J Va-cuum Sci Tech B: Microelectron Nanometer Struct, 1997, 15: 2897CrossRefGoogle Scholar
  62. 62.
    Chou S Y, Krauss P R, Renstrom P J. Imprint of sub-25 nm vias and trenches in polymers. Appl Phys Lett, 1995, 67: 3114–3116CrossRefGoogle Scholar
  63. 63.
    Chou S Y, Krauss P R, Renstrom P J. Imprint lithography with 25-nanometer resolution. Science, 1996, 272: 85–87CrossRefGoogle Scholar
  64. 64.
    Lan H B, Ding Y C, Liu H Z, et al. Mold deformation in soft UVnanoimprint lithography. Sci China Ser E-Technol Sci, 2008, 52: 294–302CrossRefGoogle Scholar
  65. 65.
    Chou S Y, Keimel C, Gu J. Ultrafast and direct imprint of nanostructures in silicon. Nature, 2002, 417: 835–837CrossRefGoogle Scholar
  66. 66.
    Ruchhoeft, P, Colburn M, Choi B, et al. Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography. J Vacuum Sci Tech B: Microelectron Nanometer Struct, 1999, 17: 2965CrossRefGoogle Scholar
  67. 67.
    Dauksher W J, Nordquist K J, Mancini D P, et al. Characterization of and imprint results using indium tin oxide-based step and flash imprint lithography templates. J Vacuum Sci Tech B: Microelectron Nanometer Struct, 2002, 20: 2857CrossRefGoogle Scholar
  68. 68.
    Ahn S H, Guo L J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: A step toward high-throughput application of continuous nanoimprinting. ACS Nano, 2009, 3: 2304–2310CrossRefGoogle Scholar
  69. 69.
    Colburn M, Bailey T, Choi B J, et al. Development and advantages of step-and-flash lithography. Solid State Technology, 2001, 44: 67Google Scholar
  70. 70.
    Kim H J, Almanza-Workman M, Garcia B, et al. Roll-to-roll manufacturing of electronics on flexible substrates using self-aligned imprint lithography (SAIL). J Soc Inf Display, 2009, 17: 963CrossRefGoogle Scholar
  71. 71.
    Hirai Y, Konishi T, Yoshikawa T, et al. Simulation and experimental study of polymer deformation in nanoimprint lithography. J Vacuum Sci Tech B: Microelectron Nanometer Struct, 2004, 22: 3288CrossRefGoogle Scholar
  72. 72.
    Li X, Shao J, Tian H, et al. Fabrication of high-aspect-ratio microstructures using dielectrophoresis-electrocapillary force-driven UVimprinting. J Micromech Microeng, 2011, 21: 065010CrossRefGoogle Scholar
  73. 73.
    Li X, Tian H, Shao J, et al. Electrically modulated microtransfer molding for fabrication of micropillar arrays with spatially varying heights. Langmuir, 2013, 29: 1351–1355CrossRefGoogle Scholar
  74. 74.
    Li X, Tian H, Wang C, et al. Electrowetting assisted air detrapping in transfer micromolding for difficult-to-mold microstructures. ACS Appl Mater Interfaces, 2014, 6: 12737–12743CrossRefGoogle Scholar
  75. 75.
    Li X, Ding Y, Shao J, et al. Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes. Opt Lett, 2011, 36: 4083–4085CrossRefGoogle Scholar
  76. 76.
    Ding Y, Shao J, Li X, et al. Method for manufacturing transparent conductive film. US Patent No. 9620264, 2017Google Scholar
  77. 77.
    Shao J, Ding Y, Chen X, et al. Method for manufacturing energy harvester comprising piezoelectric polymer microstructure array. US Patent No. 621077, 2017Google Scholar
  78. 78.
    Liang X, Zhang W, Li M, et al. Electrostatic force-assisted nanoimprint lithography (EFAN). Nano Lett, 2005, 5: 527–530CrossRefGoogle Scholar
  79. 79.
    Sciacca B, van de Groep J, Polman A, et al. Solution-grown silver nanowire ordered arrays as transparent electrodes. Adv Mater, 2016, 28: 905–909CrossRefGoogle Scholar
  80. 80.
    Hsu P C, Kong D, Wang S, et al. Electrolessly deposited electrospun metal nanowire transparent electrodes. J Am Chem Soc, 2014, 136: 10593–10596CrossRefGoogle Scholar
  81. 81.
    Hsu P C, Wang S, Wu H, et al. Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires. Nat Commun, 2013, 4: 2522CrossRefGoogle Scholar
  82. 82.
    Wu H, Kong D, Ruan Z, et al. A transparent electrode based on a metal nanotrough network. Nat Nanotech, 2013, 8: 421–425CrossRefGoogle Scholar
  83. 83.
    Kang M G, Guo L. Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes. Adv Mater, 2007, 19: 1391–1396CrossRefGoogle Scholar
  84. 84.
    Kang M G, Joon Park H, Hyun Ahn S, et al. Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells. Sol Energy Mater Sol Cells, 2010, 94: 1179–1184CrossRefGoogle Scholar
  85. 85.
    Lee G J, Yoo Y J, Song Y M. Recent advances in imaging systems and photonic nanostructures inspired by insect eye geometry. Appl Spectr Rev, 2017, 53: 112–128CrossRefGoogle Scholar
  86. 86.
    Zhu H, Shen Y, Li Y, et al. Recent advances in flexible and wearable organic optoelectronic devices. J Semicond, 2018, 39: 011011CrossRefGoogle Scholar
  87. 87.
    Hou T, Zheng C, Bai S, et al. Fabrication, characterization, and applications of microlenses. Appl Opt, 2015, 54: 7366CrossRefGoogle Scholar
  88. 88.
    Yuan W, Li L H, Lee W B, et al. Fabrication of microlens array and its application: A review. Chin J Mech Eng, 2018, 31: 16CrossRefGoogle Scholar
  89. 89.
    Lee G J, Choi C, Kim D, et al. Bioinspired artificial eyes: Optic components, digital cameras, and visual prostheses. Adv Funct Mater, 2018, 28: 1705202CrossRefGoogle Scholar
  90. 90.
    Deng Z, Chen F, Yang Q, et al. Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging. Adv Funct Mater, 2016, 26: 1995–2001CrossRefGoogle Scholar
  91. 91.
    Aldalali B, Fernandes J, Almoallem Y, et al. Flexible miniaturized camera array inspired by natural visual systems. J Microelectromech Syst, 2013, 22: 1254–1256CrossRefGoogle Scholar
  92. 92.
    Floreano D, Pericet-Camara R, Viollet S, et al. Miniature curved artificial compound eyes. Proc Natl Acad Sci USA, 2013, 110: 9267–9272CrossRefGoogle Scholar
  93. 93.
    Keum D, Jeon D S, Hwang C S H, et al. Ultrathin camera inspired by visual system of xenos peckii. In: Proceedings of the 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems. Shanghai, 2016. 636–639Google Scholar
  94. 94.
    Wrzesniewski E, Eom S H, Cao W, et al. Enhancing light extraction in top-emitting organic light-emitting devices using molded transparent polymer microlens arrays. Small, 2012, 8: 2647–2651CrossRefGoogle Scholar
  95. 95.
    Thomschke M, Reineke S, Lüssem B, et al. Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films. Nano Lett, 2012, 12: 424–428CrossRefGoogle Scholar
  96. 96.
    Shin S R, Lee H B, Jin W Y, et al. Improving light extraction of flexible OLEDs using a mechanically robust Ag mesh/ITO composite electrode and microlens array. J Mater Chem C, 2018, 6: 5444–5452CrossRefGoogle Scholar
  97. 97.
    Wei M K, Su I L, Chen Y J, et al. The influence of a microlens array on planar organic light-emitting devices. J Micromech Microeng, 2006, 16: 368–374CrossRefGoogle Scholar
  98. 98.
    Lee J H, Ho Y H, Chen K Y, et al. Efficiency improvement and image quality of organic light-emitting display by attaching cylindrical microlens arrays. Opt Express, 2008, 16: 21184–21190CrossRefGoogle Scholar
  99. 99.
    Hutley M C, Savander P, Schrader M. The use of microlenses for making spatially variant optical interconnections. Pure Appl Opt, 1992, 1: 337–346CrossRefGoogle Scholar
  100. 100.
    Shao J, Ding Y, Zhai H, et al. Fabrication of large curvature microlens array using confined laser swelling method. Opt Lett, 2013, 38: 3044CrossRefGoogle Scholar
  101. 101.
    Wei Y, Yang Q, Bian H, et al. Micropatterning microlens arrays fabricated by a femtosecond laser wet etch process. In: Proceedings of the Second International Conference on Photonics and Optical Engineering. Xi’an, 2016Google Scholar
  102. 102.
    Huang S, Li M, Shen L, et al. Fabrication of high quality aspheric microlens array by dose-modulated lithography and surface thermal reflow. Optics Laser Tech, 2018, 100: 298–303Google Scholar
  103. 103.
    Qiu J, Li M, Zhu J, et al. Fabrication of microlens array with welldefined shape by spatially constrained thermal reflow. J Micromech Microeng, 2018, 28: 085015CrossRefGoogle Scholar
  104. 104.
    Yang H, Chao C K, Wei M K, et al. High fill-factor microlens array mold insert fabrication using a thermal reflow process. J Micromech Microeng, 2004, 14: 1197–1204CrossRefGoogle Scholar
  105. 105.
    Wang L, Luo Y, Liu Z Z, et al. Fabrication of microlens array with controllable high NA and tailored optical characteristics using confined ink-jetting. Appl Surf Sci, 2018, 442: 417–422CrossRefGoogle Scholar
  106. 106.
    Zhong K, Gao Y, Li F, et al. Fabrication of PDMS microlens array by digital maskless grayscale lithography and replica molding technique. Optik, 2014, 125: 2413–2416CrossRefGoogle Scholar
  107. 107.
    Cui Z, Du J, Guo Y. Overview of grey-scale photolithography for micro-optical elements fabrication. In: Proceedings of SPIE—TheInternational Society for Optical Engineering. San Jose, 2003. 4984: 111–117Google Scholar
  108. 108.
    Chan E, Crosby A. Fabricating microlens arrays by surface wrinkling. Adv Mater, 2006, 18: 3238–3242CrossRefGoogle Scholar
  109. 109.
    Yang S Y, Cheng F S, Xu S W, et al. Fabrication of microlens arrays using UV micro-stamping with soft roller and gas-pressurized platform. MicroElectron Eng, 2008, 85: 603–609CrossRefGoogle Scholar
  110. 110.
    Hu H, Tian H, Shao J, et al. Fabrication of bifocal microlens arrays based on controlled electrohydrodynamic reflowing of pre-patterned polymer. J Micromech Microeng, 2014, 24: 095027CrossRefGoogle Scholar
  111. 111.
    Jiang C, Li X, Tian H, et al. Lateral flow through a parallel gap driven by surface hydrophilicity and liquid edge pinning for creating microlens array. ACS Appl Mater Interfaces, 2014, 6: 18450–18456CrossRefGoogle Scholar
  112. 112.
    Li X, Tian H, Ding Y, et al. Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature. ACS Appl Mater Interfaces, 2013, 5: 9975–9982CrossRefGoogle Scholar
  113. 113.
    Zhou X, Peng Y, Peng R, et al. Fabrication of large-scale microlens arrays based on screen printing for integral imaging 3D display. ACS Appl Mater Interfaces, 2016, 8: 24248–24255CrossRefGoogle Scholar
  114. 114.
    Kong J H, Jang N S, Kim S H, et al. Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors. Carbon, 2014, 77: 199–207CrossRefGoogle Scholar
  115. 115.
    Choong C L, Shim M B, Lee B S, et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater, 2014, 26: 3451–3458CrossRefGoogle Scholar
  116. 116.
    Boutry C M, Nguyen A, Lawal Q O, et al. A sensitive and biodegradable pressure sensor array for cardiovascular monitoring. Adv Mater, 2015, 27: 6954–6961CrossRefGoogle Scholar
  117. 117.
    Joo Y, Byun J, Seong N, et al. Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor. Nanoscale, 2015, 7: 6208–6215CrossRefGoogle Scholar
  118. 118.
    Rana A, Roberge J P, Duchaine V. An improved soft dielectric for a highly sensitive capacitive tactile sensor. IEEE Senss J, 2016, 16: 7853–7863CrossRefGoogle Scholar
  119. 119.
    Huang Y A, Bu N, Duan Y, et al. Electrohydrodynamic direct-writing. Nanoscale, 2013, 5: 12007–12017CrossRefGoogle Scholar
  120. 120.
    Dagdeviren C, Su Y, Joe P, et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat Commun, 2014, 5: 4496CrossRefGoogle Scholar
  121. 121.
    Chen X, Parida K, Wang J, et al. A stretchable and transparent nanocomposite nanogenerator for self-powered physiological monitoring. ACS Appl Mater Interfaces, 2017, 9: 42200–42209CrossRefGoogle Scholar
  122. 122.
    Lee J H, Lee K Y, Gupta M K, et al. Highly stretchable piezoelectricpyroelectric hybrid nanogenerator. Adv Mater, 2014, 26: 765–769CrossRefGoogle Scholar
  123. 123.
    Bhavanasi V, Kusuma D Y, Lee P S. Polarization orientation, piezoelectricity, and energy harvesting performance of ferroelectric PVDF-TrFE nanotubes synthesized by nanoconfinement. Adv Energy Mater, 2014, 4: 1400723CrossRefGoogle Scholar
  124. 124.
    Soin N, Shah T H, Anand S C, et al. Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications. Energy Environ Sci, 2014, 7: 1670–1679CrossRefGoogle Scholar
  125. 125.
    Hu Z, Tian M, Nysten B, et al. Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nat Mater, 2009, 8: 62–67CrossRefGoogle Scholar
  126. 126.
    Cha S N, Kim S M, Kim H J, et al. Porous PVDF as effective sonic wave driven nanogenerators. Nano Lett, 2011, 11: 5142–5147CrossRefGoogle Scholar
  127. 127.
    Mao Y, Zhao P, McConohy G, et al. Sponge-like piezoelectric polymer films for scalable and integratable nanogenerators and selfpowered electronic systems. Adv Energy Mater, 2014, 4: 1301624CrossRefGoogle Scholar
  128. 128.
    Hong C C, Huang S Y, Shieh J, et al. Enhanced piezoelectricity of nanoimprinted sub-20 nm poly(vinylidene fluoride-trifluoroethylene) copolymer nanograss. Macromolecules, 2012, 45: 1580–1586CrossRefGoogle Scholar
  129. 129.
    Lee J H, Yoon H J, Kim T Y, et al. Micropatterned P(VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive selfpowered pressure sensors. Adv Funct Mater, 2015, 25: 3203–3209CrossRefGoogle Scholar
  130. 130.
    Park S H, Lee H B, Yeon S M, et al. Flexible and stretchable piezoelectric sensor with thickness-tunable configuration of electrospun nanofiber mat and elastomeric substrates. ACS Appl Mater Interfaces, 2016, 8: 24773–24781CrossRefGoogle Scholar
  131. 131.
    Chang C, Tran V H, Wang J, et al. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett, 2010, 10: 726–731CrossRefGoogle Scholar
  132. 132.
    Lang C, Fang J, Shao H, et al. High-sensitivity acoustic sensors from nanofibre webs. Nat Commun, 2016, 7: 11108CrossRefGoogle Scholar
  133. 133.
    Duan Y, Ding Y, Bian J, et al. Ultra-stretchable piezoelectric nanogenerators via large-scale aligned fractal inspired micro/nanofibers. Polymers, 2017, 9: 714CrossRefGoogle Scholar
  134. 134.
    Bu N, Huang Y A, Duan Y, et al. Near-field behavior of electrified jet under moving substrate constrains. AIP Adv, 2015, 5: 017138CrossRefGoogle Scholar
  135. 135.
    Dong W, Zhu C, Ye D, et al. Optimal design of self-similar serpentine interconnects embedded in stretchable electronics. Appl Phys A, 2017, 123: 428CrossRefGoogle Scholar
  136. 136.
    Ding Y, Duan Y, Huang Y A. Electrohydrodynamically printed, flexible energy harvester using in situ poled piezoelectric nanofibers. Energy Tech, 2015, 3: 351–358CrossRefGoogle Scholar
  137. 137.
    Bu N, Huang Y, Wang X, et al. Continuously tunable and oriented nanofiber direct-written by mechano-electrospinning. Mater Manufacturing Processes, 2012, 27: 1318–1323CrossRefGoogle Scholar
  138. 138.
    Dong W T, Xiao L, Zhu C, et al. Theoretical and experimental study of 2D conformability of stretchable electronics laminated onto skin. Sci China Tech Sci, 2017, 60: 1415–1422CrossRefGoogle Scholar
  139. 139.
    Yin F, Ye D, Zhu C, et al. Stretchable, highly durable ternary nanocomposite strain sensor for structural health monitoring of flexible aircraft. Sensors, 2017, 17: 2677CrossRefGoogle Scholar
  140. 140.
    Bian J, Ding Y, Duan Y, et al. Buckling-driven self-assembly of selfsimilar inspired micro/nanofibers for ultra-stretchable electronics. Soft Matter, 2017, 13: 7244–7254CrossRefGoogle Scholar
  141. 141.
    Duan Y, Huang Y A, Yin Z. Transfer printing and patterning of stretchable electrospun film. Thin Solid Films, 2013, 544: 152–156CrossRefGoogle Scholar
  142. 142.
    Shin S H, Choi S Y, Lee M H, et al. High-performance piezoelectric nanogenerators via imprinted sol-gel BaTiO3 nanopillar array. ACS Appl Mater Interfaces, 2017, 9: 41099–41103CrossRefGoogle Scholar
  143. 143.
    Chen X, Li X, Shao J, et al. High-performance piezoelectric nanogenerators with imprinted P(VDF-TrFE)/BaTiO3 nanocomposite micropillars for self-powered flexible sensors. Small, 2017, 13: 1604245CrossRefGoogle Scholar
  144. 144.
    Song Y, Zhang J, Guo H, et al. All-fabric-based wearable selfcharging power cloth. Appl Phys Lett, 2017, 111: 073901CrossRefGoogle Scholar
  145. 145.
    Meng B, Tang W, Too Z, et al. A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energy Environ Sci, 2013, 6: 3235CrossRefGoogle Scholar
  146. 146.
    Cui N, Gu L, Lei Y, et al. Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator. ACS Nano, 2016, 10: 6131–6138CrossRefGoogle Scholar
  147. 147.
    Zhang Q, Liang Q, Liao Q, et al. Service behavior of multifunctional triboelectric nanogenerators. Adv Mater, 2017, 29: 1606703CrossRefGoogle Scholar
  148. 148.
    Zhang B, Zhang L, Deng W, et al. Self-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring. ACS Nano, 2017, 11: 7440–7446CrossRefGoogle Scholar
  149. 149.
    Wu C, Kim T W, Park J H, et al. Enhanced triboelectric nanogenerators based on MoS2 monolayer nanocomposites acting as electronacceptor layers. ACS Nano, 2017, 11: 8356–8363CrossRefGoogle Scholar
  150. 150.
    Wang J, Wu C, Dai Y, et al. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat Commun, 2017, 8: 88CrossRefGoogle Scholar
  151. 151.
    Cheng X, Miao L, Song Y, et al. High efficiency power management and charge boosting strategy for a triboelectric nanogenerator. Nano Energy, 2017, 38: 438–446CrossRefGoogle Scholar
  152. 152.
    Chen X, Han M, Chen H, et al. A wave-shaped hybrid piezoelectric and triboelectric nanogenerator based on P(VDF-TrFE) nanofibers. Nanoscale, 2017, 9: 1263–1270CrossRefGoogle Scholar
  153. 153.
    Li C, Yin Y, Wang B, et al. Self-Powered electrospinning system driven by a triboelectric nanogenerator. ACS Nano, 2017, 11: 10439–10445CrossRefGoogle Scholar
  154. 154.
    Dong K, Wang Y C, Deng J, et al. A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano, 2017, 11: 9490–9499CrossRefGoogle Scholar
  155. 155.
    Zheng Q, Jin Y, Liu Z, et al. Robust multilayered encapsulation for high-performance triboelectric nanogenerator in harsh environment. ACS Appl Mater Interfaces, 2016, 8: 26697–26703CrossRefGoogle Scholar
  156. 156.
    Zhang S L, Lai Y C, He X, et al. Auxetic foam-based contact-mode triboelectric nanogenerator with highly sensitive self-powered strain sensing capabilities to monitor human body movement. Adv Funct Mater, 2017, 27: 1606695CrossRefGoogle Scholar
  157. 157.
    Li T, Zou J, Xing F, et al. From dual-mode triboelectric nanogenerator to smart tactile sensor: A multiplexing design. ACS Nano, 2017, 11: 3950–3956CrossRefGoogle Scholar
  158. 158.
    Li S, Wang J, Peng W, et al. Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators. Adv Energy Mater, 2017, 7: 1602832CrossRefGoogle Scholar
  159. 159.
    He X, Zi Y, Guo H, et al. A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics. Adv Funct Mater, 2017, 27: 1604378CrossRefGoogle Scholar
  160. 160.
    Song W, Gan B, Jiang T, et al. Nanopillar arrayed triboelectric nanogenerator as a self-powered sensitive sensor for a sleep monitoring system. ACS Nano, 2016, 10: 8097–8103CrossRefGoogle Scholar
  161. 161.
    Zhang X S, Han M D, Wang R X, et al. High-performance triboelectric nanogenerator with enhanced energy density based on singlestep fluorocarbon plasma treatment. Nano Energy, 2014, 4: 123–131CrossRefGoogle Scholar
  162. 162.
    Choi D, Yoo D, Kim D S. One-step fabrication of transparent and flexible nanotopographical-triboelectric nanogenerators via thermal nanoimprinting of thermoplastic fluoropolymers. Adv Mater, 2015, 27: 7386–7394CrossRefGoogle Scholar
  163. 163.
    Dhakar L, Gudla S, Shan X, et al. Large scale triboelectric nanogenerator and self-powered pressure sensor array using low cost rollto- roll uv embossing. Sci Rep, 2016, 6: 22253CrossRefGoogle Scholar
  164. 164.
    Yan J, Wang Q, Wei T, et al. Recent Advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater, 2014, 4: 1300816CrossRefGoogle Scholar
  165. 165.
    Dong L, Xu C, Li Y, et al. Flexible electrodes and supercapacitors for wearable energy storage: A review by category. J Mater Chem A, 2016, 4: 4659–4685CrossRefGoogle Scholar
  166. 166.
    Xue M, Xie Z, Zhang L, et al. Microfluidic etching for fabrication of flexible and all-solid-state micro supercapacitor based on MnO2 nanoparticles. Nanoscale, 2011, 3: 2703–2708CrossRefGoogle Scholar
  167. 167.
    Qiu Y, Zhao Y, Yang X, et al. Three-dimensional metal/oxide nanocone arrays for high-performance electrochemical pseudocapacitors. Nanoscale, 2014, 6: 3626–3631CrossRefGoogle Scholar
  168. 168.
    Jiang S, Shi T, Gao Y, et al. Fabrication of a 3D micro/nano dualscale carbon array and its demonstration as the microelectrodes for supercapacitors. J Micromech Microeng, 2014, 24: 045001CrossRefGoogle Scholar
  169. 169.
    Wang Y, Tian H, Shao J, et al. Switchable dry adhesion with step-like micropillars and controllable interfacial contact. ACS Appl Mater Interfaces, 2016, 8: 10029–10037CrossRefGoogle Scholar
  170. 170.
    Kim S, Sitti M. Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives. Appl Phys Lett, 2006, 89: 261911CrossRefGoogle Scholar
  171. 171.
    Kwak M K, Jeong H E, Bae W G, et al. Anisotropic adhesion properties of triangular-tip-shaped micropillars. Small, 2011, 7: 2296–2300CrossRefGoogle Scholar
  172. 172.
    Davies J, Haq S, Hawke T, et al. A practical approach to the development of a synthetic Gecko tape. Int J Adhes Adhes, 2009, 29: 380–390CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • JinYou Shao
    • 1
    Email author
  • XiaoLiang Chen
    • 1
  • XiangMing Li
    • 1
  • HongMiao Tian
    • 1
  • ChunHui Wang
    • 1
  • BingHeng Lu
    • 1
  1. 1.State Key Laboratory for Manufacturing Systems EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations