Carbon quantum dots/BiVO4 composite with enhanced photocatalytic activity

  • ZhiJie ZhangEmail author
  • HaiRui Huang
  • JiaYue Xu
  • Na Zhang
  • Cheng Zhang


In this study, we report the facile fabrication of a carbon quantum dots (CQDs)/BiVO4 composite with efficient photocatalytic activity. Due to the excellent upconversion photoluminescence, as well as the photo-induced electron transfer and reservoir properties of CQDs, the CQDs/BiVO4 composite exhibited superior photocatalytic performance in the degradation of rhodamine B (RhB) under the irradiation of simulated solar light. This study provides a strategy for the development of high-performance catalysts based on CQDs.


carbon quantum dots BiVO4 photocatalysis composite electron transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc, 2004, 126: 12736–12737CrossRefGoogle Scholar
  2. 2.
    Lim S Y, Shen W, Gao Z. Carbon quantum dots and their applications. Chem Soc Rev, 2015, 44: 362–381CrossRefGoogle Scholar
  3. 3.
    Zhang Z, Zheng T, Li X, et al. Progress of carbon quantum dots in photocatalysis applications. Part Part Syst Charact, 2016, 33: 457–472CrossRefGoogle Scholar
  4. 4.
    Yao Y Y, Gedda G, Girma W M, et al. Magnetofluorescent carbon dots derived from crab shell for targeted dual-modality bioimaging and drug delivery. ACS Appl Mater Interfaces, 2017, 9: 13887–13899CrossRefGoogle Scholar
  5. 5.
    Guo J, Liu D, Filpponen I, et al. Photoluminescent hybrids of cellulose nanocrystals and carbon quantum dots as cytocompatible probes for in vitro bioimaging. Biomacromolecules, 2017, 18: 2045–2055CrossRefGoogle Scholar
  6. 6.
    Li W Q, Wang Z, Hao S, et al. Mitochondria-based aircraft carrier enhances in vivo imaging of carbon quantum dots and delivery of anticancer drug. Nanoscale, 2018, 10: 3744–3752CrossRefGoogle Scholar
  7. 7.
    Pan D, Guo L, Zhang J, et al. Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J Mater Chem, 2012, 22: 3314–3318CrossRefGoogle Scholar
  8. 8.
    Tan H L, Amal R, Ng Y H. Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible lightdriven BiVO4: A review. J Mater Chem A, 2017, 5: 16498–16521CrossRefGoogle Scholar
  9. 9.
    Wang X, Liao D, Yu H, et al. Highly efficient BiVO4 single-crystal photocatalyst with selective Ag2 O-Ag modification: Orientation transport, rapid interfacial transfer and catalytic reaction. Dalton Trans, 2018, 47: 6370–6377CrossRefGoogle Scholar
  10. 10.
    Park G, Park J Y, Seo J H, et al. Ultrasonic-assisted preparation of a pinhole-free BiVO4 photoanode for enhanced photoelectrochemical water oxidation. Chem Commun, 2018, 54: 5570–5573CrossRefGoogle Scholar
  11. 11.
    Jo W J, Jang J W, Kong K, et al. Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. Angew Chem, 2012, 124: 3201–3205CrossRefGoogle Scholar
  12. 12.
    Zhou M, Wu H B, Bao J, et al. Ordered macroporous BiVO4 architectures with controllable dual porosity for efficient solar water splitting. Angew Chem, 2013, 125: 8741–8745CrossRefGoogle Scholar
  13. 13.
    Hong S J, Lee S, Jang J S, et al. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ Sci, 2011, 4: 1781–1787CrossRefGoogle Scholar
  14. 14.
    Liu J, Zhang H, Tang D, et al. Carbon quantum dot/silver nanoparticle/ polyoxometalate composites as photocatalysts for overall water splitting in visible light. ChemCatChem, 2014, 6: 2634–2641CrossRefGoogle Scholar
  15. 15.
    Pan J, Sheng Y, Zhang J, et al. Preparation of carbon quantum dots/ TiO2 nanotubes composites and their visible light catalytic applications. J Mater Chem A, 2014, 2: 18082–18086CrossRefGoogle Scholar
  16. 16.
    Liu J, Liu Y, Liu N, et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science, 2015, 347: 970–974CrossRefGoogle Scholar
  17. 17.
    Di J, Xia J, Ji M, et al. Carbon quantum dots modified BiOCl ultrathin nanosheets with enhanced molecular oxygen activation ability for broad spectrum photocatalytic properties and mechanism insight. ACS Appl Mater Interfaces, 2015, 7: 20111–20123CrossRefGoogle Scholar
  18. 18.
    Di J, Xia J, Ge Y, et al. Novel visible-light-driven CQDs/Bi2WO6 hybrid materials with enhanced photocatalytic activity toward organic pollutants degradation and mechanism insight. Appl Catal B-Environ, 2015, 168–169: 51–61Google Scholar
  19. 19.
    Di J, Xia J, Chen X, et al. Tunable oxygen activation induced by oxygen defects in nitrogen doped carbon quantum dots for sustainable boosting photocatalysis. Carbon, 2017, 114: 601–607CrossRefGoogle Scholar
  20. 20.
    Tang D, Zhang H, Huang H, et al. Carbon quantum dots enhance the photocatalytic performance of BiVO4 with different exposed facets. Dalton Trans, 2013, 42: 6285–6289CrossRefGoogle Scholar
  21. 21.
    Martindale B C M, Hutton G A M, Caputo C A, et al. Solar hydrogen production using carbon quantum dots and a molecular nickel catalyst. J Am Chem Soc, 2015, 137: 6018–6025CrossRefGoogle Scholar
  22. 22.
    Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett, 2006, 97: 187401CrossRefGoogle Scholar
  23. 23.
    Xiang Q, Yu J, Jaroniec M. Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale, 2011, 3: 3670–3678CrossRefGoogle Scholar
  24. 24.
    Zhu Y, Liu Y, Lv Y, et al. Enhancement of photocatalytic activity for BiPO4 via phase junction. J Mater Chem A, 2014, 2: 13041–13048CrossRefGoogle Scholar
  25. 25.
    Li H, He X, Kang Z, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed, 2010, 49: 4430–4434CrossRefGoogle Scholar
  26. 26.
    Kim H G, Borse P H, Choi W, et al. Photocatalytic nanodiodes for visible-light photocatalysis. Angew Chem Int Ed, 2005, 44: 4585–4589CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • ZhiJie Zhang
    • 1
    Email author
  • HaiRui Huang
    • 1
  • JiaYue Xu
    • 1
  • Na Zhang
    • 1
  • Cheng Zhang
    • 1
  1. 1.Institute of Crystal Growth, School of Materials Science and EngineeringShanghai Institute of TechnologyShanghaiChina

Personalised recommendations