Preparation and characterization of Ti3C2Tx with SERS properties

  • XiaoJing Xie
  • YuMei Zhu
  • Fang Li
  • XiaoWei Zhou
  • Tao XueEmail author


During the preparation of MXenes, the control of the amounts of metal atoms and functional groups has a great influence on the properties of Surface Enhancement Raman Scattering (SERS) substrate materials. A freestanding Ti3C2Tx membrane with good uniformity was prepared by HF etching of Ti3AlC2. The effect of etching time on the removal of Al atoms and the functional groups bonded to Ti3C2 was precisely characterized by XRD. In addition, by using Ti3C2Tx as the SERS substrate, a quadratic relationship between the enhancement intensity and concentration of the dye molecule rhodamine was achieved.


MXene Ti3C2Tx SERS controlling terminations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albrecht M G, Creighton J A. Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc, 1977, 99: 5215–5217CrossRefGoogle Scholar
  2. 2.
    Jeanmaire D L, Van Duyne R P. Surface raman spectroelectrochemistry. J Electroanal Chem Interfacial Electrochem, 1977, 84: 1–20CrossRefGoogle Scholar
  3. 3.
    Stiles P L, Dieringer J A, Shah N C, et al. Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem, 2008, 1: 601–626CrossRefGoogle Scholar
  4. 4.
    Liu Y, Liu Y, Xing Y, et al. Magnetically three-dimensional Au nanoparticles/ reduced graphene/nickel foams for Raman trace detection. Senss Actuators B-Chem, 2018, 273: 884–890CrossRefGoogle Scholar
  5. 5.
    Han X X, Zhao B, Ozaki Y. Surface-enhanced Raman scattering for protein detection. Anal Bioanal Chem, 2009, 394: 1719–1727CrossRefGoogle Scholar
  6. 6.
    Culha M, Stokes D, Allain L R, et al. Surface-enhanced raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics. Anal Chem, 2003, 75: 6196–6201CrossRefGoogle Scholar
  7. 7.
    Lane L A, Qian X, Nie S. SERS nanoparticles in medicine: from labelfree detection to spectroscopic tagging. Chem Rev, 2015, 115: 10489–10529CrossRefGoogle Scholar
  8. 8.
    Vendrell M, Maiti K K, Dhaliwal K, et al. Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotech, 2013, 31: 249–257CrossRefGoogle Scholar
  9. 9.
    Campion A, Kambhampati P Surface-enhanced Raman scattering. Chem Soc Rev, 1998, 27: 241–250CrossRefGoogle Scholar
  10. 10.
    Wu D Y, Liu X M, Duan S, et al. Chemical enhancement effects in SERS spectra: A quantum chemical study of pyridine interacting with copper, silver, gold and platinum metals. J Phys Chem C, 2008, 112: 4195–4204CrossRefGoogle Scholar
  11. 11.
    Otto A. The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering. J Raman Spectrosc, 2005, 36: 497–509CrossRefGoogle Scholar
  12. 12.
    Kleinman S L, Frontiera R R, Henry A I, et al. Creating, characterizing, and controlling chemistry with SERS hot spots. Phys Chem Chem Phys, 2013, 15: 21–36CrossRefGoogle Scholar
  13. 13.
    Schedin F, Lidorikis E, Lombardo A, et al. Surface-enhanced raman spectroscopy of graphene. ACS Nano, 2010, 4: 5617–5626CrossRefGoogle Scholar
  14. 14.
    Yang Y, Liu J, Fu Z W, et al. Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity. J Am Chem Soc, 2014, 136: 8153–8156CrossRefGoogle Scholar
  15. 15.
    Brus L. Noble metal nanocrystals: Plasmon electron transfer photochemistry and single-molecule raman spectroscopy. Acc Chem Res, 2008, 41: 1742–1749CrossRefGoogle Scholar
  16. 16.
    Kneipp K, Kneipp H, Kneipp J. Surface-enhanced raman scattering in local optical fields of silver and gold nanoaggregatesfrom singlemolecule raman spectroscopy to ultrasensitive probing in live cells. Acc Chem Res, 2006, 39: 443–450CrossRefGoogle Scholar
  17. 17.
    Kleinman S L, Sharma B, Blaber M G, et al. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced raman excitation spectroscopy. J Am Chem Soc, 2013, 135: 301–308CrossRefGoogle Scholar
  18. 18.
    Zhang L, Lang X, Hirata A, et al. Wrinkled nanoporous gold films with ultrahigh surface-enhanced raman scattering enhancement. ACS Nano, 2011, 5: 4407–4413CrossRefGoogle Scholar
  19. 19.
    He D, Hu B, Yao Q F, et al. Large-scale synthesis of flexible freestanding SERS substrates with high sensitivity: Electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. ACS Nano, 2009, 3: 3993–4002CrossRefGoogle Scholar
  20. 20.
    Kneipp K, Kneipp H, Itzkan I, et al. Surface-enhanced non-linear Raman scattering at the single-molecule level. Curr Sci, 1999, 77: 915–924Google Scholar
  21. 21.
    Moskovits M. Surface-enhanced spectroscopy. Rev Mod Phys, 1985, 57: 783–826CrossRefGoogle Scholar
  22. 22.
    Xu W, Mao N, Zhang J. Graphene: A platform for surface-enhanced Raman spectroscopy. Small, 2013, 9: 1206–1224CrossRefGoogle Scholar
  23. 23.
    Tao L, Chen K, Chen Z, et al. 1T′ transition metal telluride atomic layers for plasmon-free SERS at femtomolar levels. J Am Chem Soc, 2018, 140: 8696–8704CrossRefGoogle Scholar
  24. 24.
    Dall’Agnese Y, Taberna P L, Gogotsi Y, et al. Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors. J Phys Chem Lett, 2015, 6: 2305–2309CrossRefGoogle Scholar
  25. 25.
    Hu M, Li Z, Hu T, et al. High-capacitance mechanism for Ti3 C2Tx MXene by in situ electrochemical raman spectroscopy investigation. ACS Nano, 2016, 10: 11344–11350CrossRefGoogle Scholar
  26. 26.
    Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature, 2014, 3: 78–81Google Scholar
  27. 27.
    Tang Q, Zhou Z, Shen P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J Am Chem Soc, 2012, 134: 16909–16916CrossRefGoogle Scholar
  28. 28.
    Zhang X, Zhang Z, Zhou Z. MXene-based materials for electrochemical energy storage. J Energy Chem, 2018, 27: 73–85CrossRefGoogle Scholar
  29. 29.
    Wen J, Zhang X, Gao H. Role of the H-containing groups on the structural dynamics of Ti3C2Tx MXene. Physica B-Condensed Matter, 2018, 537: 155–161CrossRefGoogle Scholar
  30. 30.
    Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater, 2011, 23: 4248–4253CrossRefGoogle Scholar
  31. 31.
    Sharma G, Naguib M, Feng D, et al. Calorimetric determination of thermodynamic stability of MAX and MXene phases. J Phys Chem C, 2016, 120: 28131–28137CrossRefGoogle Scholar
  32. 32.
    Naguib M, Mochalin V N, Barsoum M W, et al. 25th Anniversary Article: MXenes: A new family of two-dimensional materials. Adv Mater, 2014, 26: 992–1005CrossRefGoogle Scholar
  33. 33.
    Cui X, Zhang W, Yeo B S, et al. Tuning the resonance frequency of Ag-coated dielectric tips. Opt Express, 2007, 15: 8309–8316CrossRefGoogle Scholar
  34. 34.
    Mauchamp V, Bugnet M, Bellido E P, et al. Enhanced and tunable surface plasmons in two-dimensional Ti3C2 stacks: Electronic structure versus boundary effects. Phys Rev B, 2014, 89: 235428CrossRefGoogle Scholar
  35. 35.
    Ren B, Lin X F, Yang Z L, et al. Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes. J Am Chem Soc, 2003, 125: 9598–9599CrossRefGoogle Scholar
  36. 36.
    Chase D B, Parkinson B A. Surface-enhanced Raman spectroscopy in the near-infrared. Appl Spectrosc, 1988, 42: 1186–1187CrossRefGoogle Scholar
  37. 37.
    Mashtalir O, Cook K M, Mochalin V N, et al. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J Mater Chem A, 2014, 2: 14334–14338CrossRefGoogle Scholar
  38. 38.
    Mishra A. Effect of surface potential and charge transfer mechanism in reduced graphene oxide and magnetic nanocomposites. Mater Res Bull, 2018, 108: 207–213CrossRefGoogle Scholar
  39. 39.
    Mashtalir O, Naguib M, Mochalin V N, et al. Intercalation and delamination of layered carbides and carbonitrides. Nat Commun, 2013, 4: 1716CrossRefGoogle Scholar
  40. 40.
    Sarycheva A, Makaryan T, Maleski K, et al. Two-Dimensional Titanium Carbide (MXene) as surface-enhanced raman scattering substrate. J Phys Chem C, 2017, 121: 19983–19988CrossRefGoogle Scholar
  41. 41.
    Cheng G X. Also talking about the enhanced in light scattering. J Light Scatter, 2016, 28: 374–390Google Scholar
  42. 42.
    Zha X H, Luo K, Li Q, et al. Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes. EPL, 2015, 111: 26007CrossRefGoogle Scholar
  43. 43.
    Sarikurt S, Çakır D, Keçeli M, et al. The influence of surface functionalization on thermal transport and thermoelectric properties of MXene monolayers. Nanoscale, 2018, 10: 8859–8868CrossRefGoogle Scholar
  44. 44.
    Palisaitis J, Persson I, Halim J, et al. On the structural stability of MXene and the role of transition metal adatoms. Nanoscale, 2018, 10: 10850–10855CrossRefGoogle Scholar
  45. 45.
    Su X, Zhang J, Mu H, et al. Effects of etching temperature and ball milling on the preparation and capacitance of Ti3C2 MXene. J Alloys Compd, 2018, 752: 32–39CrossRefGoogle Scholar
  46. 46.
    Xie Y, Naguib M, Mochalin V N, et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J Am Chem Soc, 2014, 136: 6385–6394CrossRefGoogle Scholar
  47. 47.
    Zhu Y M, Zhou X W, Chen D S, et al. Ternary Fe3O4@PANI@Au nanocomposites as a magnetic catalyst for degradation of organic dyes. Sci China Technol Sci, 2017, 60: 749–757CrossRefGoogle Scholar
  48. 48.
    Olson L G, Harris J M. Surface-enhanced raman spectroscopy studies of surfactant adsorption to a hydrophobic interface. Appl Spectrosc, 2008, 62: 149–156CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • XiaoJing Xie
    • 1
  • YuMei Zhu
    • 1
  • Fang Li
    • 1
  • XiaoWei Zhou
    • 1
  • Tao Xue
    • 1
    • 2
    Email author
  1. 1.School of Materials Science and EngineeringTianjin UniversityTianjinChina
  2. 2.Center for Analysis and TestsTianjin UniversityTianjinChina

Personalised recommendations