Advertisement

The technology of space plasma in-situ measurement on the China Seismo-Electromagnetic Satellite

  • Chao Liu
  • Yibing Guan
  • Xiangzhi Zheng
  • Aibing Zhang
  • Diego Piero
  • Yueqiang Sun
Article
  • 3 Downloads

Abstract

The China Seismo-Electromagnetic satellite (CSES) was designed to study the ionospheric disturbances associated with earthquakes. Satellite payload includes nine instruments. Among them, we recall instruments for plasma analysis, electric, magnetic fields and high energy particle detectors. Langmuir probe (LP) and plasma analyzer package (PAP) are the in-situ payloads to measure space plasma. Its scientific objective is to research space plasma physics phenomena and the ionosphere changes caused by seismic. It is the first application of in-situ measurement technology in the field of space exploration in China. The Langmuir probe and Plasma Analyzer Package have been tested and calibrated to verify the performance in INAF-IAPS. Currently, on-orbit testing is being performed with satellites.

Keywords

CSES Langmuir probe plasma analyzer package space plasma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bleier T, Freund F. Impending earthquake have been sending us warning signals and people are starting to listen. IEEE Spectrum International, 2005, 12: 17–21Google Scholar
  2. 2.
    Parrot M, Berthelier J J, Lebreton J P, et al. Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions. Phys Chem Earth Parts A/B/C, 2006, 31: 486–495CrossRefGoogle Scholar
  3. 3.
    Hasbi A M, Mohd Ali M A, Misran N. Ionospheric variations before some large earthquakes over Sumatra. Nat Hazards Earth Syst Sci, 2011, 11: 597–611CrossRefGoogle Scholar
  4. 4.
    Heki K. Ionospheric electron enhancement preceding the 2011 Tohoku- Oki earthquake. Geophys Res Lett, 2011, 38: L17312Google Scholar
  5. 5.
    Hsiao C C, Liu J Y, Oyama K I, et al. Ionospheric electron density anomaly prior to the December 26, 2006 M7.0 Pingtung earthquake doublet observed by FORMOSAT-3/COSMIC. Phys Chem Earth Parts A/B/C, 2009, 34: 474–478CrossRefGoogle Scholar
  6. 6.
    Pulinets S A, Ouzounov D, Ciraolo L, et al. Thermal, atmospheric and ionospheric anomalies around the time of the Colima M7.8 earthquake of 21 January 2003. Ann Geophys, 2006, 24: 835–849CrossRefGoogle Scholar
  7. 7.
    Kamogawa M. Preseismic lithosphere-atmosphere-ionosphere coupling. Eos Trans AGU, 2006, 87: 417–424CrossRefGoogle Scholar
  8. 8.
    Hayakawa M. Electromagnetic phenomena associated with earthquakes: Review. IEEJ Trans FM, 2001, 121: 893–898CrossRefGoogle Scholar
  9. 9.
    Liu J, Huang J, Zhang X. Ionospheric perturbations in plasma parameters before global strong earthquakes. Adv Space Res, 2014, 53: 776–787CrossRefGoogle Scholar
  10. 10.
    Hobara Y, Nakamura R, Suzuki M, et al. Ionospheric perturbations observed by the low altitude satellite DEMETER and possible relation with seismicity. J Atmos Electricity, 2013, 33: 21–29CrossRefGoogle Scholar
  11. 11.
    Karia S, Sarkar S, Pathak K. Analysis of GPS-based TEC and electron density by the DEMETER satellite before the Sumatra earthquake on 30 September 2009. Int J Remote Sens, 2012, 33: 5119–5134CrossRefGoogle Scholar
  12. 12.
    Yang F, Shen X H, Wu Y. Electromagnetic satellite and its application in the field of seismo-precursor detection. Space Eng, 2008, 17: 68–73Google Scholar
  13. 13.
    Zhang X, Shen X, Zhao S, et al. The characteristics of quasistatic electric field perturbations observed by DEMETER satellite before large earthquakes. J Asian Earth Sci, 2014, 79: 42–52CrossRefGoogle Scholar
  14. 14.
    Shen X H, Wu Y, Shan X J. Remote sensing application in earthquake science and general proposal for earthquake satellite project in China. Recent Develop World Seismol, 2007, 344: 38–45Google Scholar
  15. 15.
    Shen X H, Zhang X M, Yuan S G, et al. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission. Sci China Tech Sci, 2018, 61: 634–642CrossRefGoogle Scholar
  16. 16.
    Cao J B, Zeng L, Zhan F, et al. The electromagnetic wave experiment for CSES mission: Search coil magnetometer. Sci China Tech Sci, 2018, 61: 653–658CrossRefGoogle Scholar
  17. 17.
    Cheng B J, Zhou B, Magnes W, et al. High precision magnetometer for geomagnetic exploration onboard of the China Seismo-Electromagnetic Satellite. Sci China Tech Sci, 2018, 61: 659–668CrossRefGoogle Scholar
  18. 18.
    Ambrosi G, Bartocci S, Basara L, et al. The HEPD particle detector of the CSES satellite mission for investigating seismo-associated perturbations of the Van Allen belts. Sci China Tech Sci, 2018, 61: 643–652CrossRefGoogle Scholar
  19. 19.
    Mott-Smith H M, Langmuir I. the theory of collectors in gaseous discharges. Phys Rev, 1926, 28: 727–763Google Scholar
  20. 20.
    Guan Y, Wang S, Liu C. Design and simulation for the sensor of the space based Langmuir probe. Chin J Space Sci, 2012, 32: 750–756Google Scholar
  21. 21.
    Liu C, Guan Y B, Zhang A B. The ionosphere measurement technology of Langmuir probe on China seismo-electromagnetic satellite. Acta Phys Sin, 2016, 65: 189401Google Scholar
  22. 22.
    Wahlström M K, Johansson E, Veszelei E, et al. Improved Langmuir probe surface coatings for the Cassini satellite. Thin Solid Films, 1992, 220: 315–320CrossRefGoogle Scholar
  23. 23.
    Eriksson A I, Boström R, Gill R, et al. RPC-LAP: The Rosetta Langmuir probe instrument. Space Sci Rev, 2007, 128: 729–744CrossRefGoogle Scholar
  24. 24.
    Jiao W X. Space Exploration. Beijing: Peking University Press, 2002. 217–218Google Scholar
  25. 25.
    Rich F J. Users Guide for the Topside Ionospheric Plasma Monitor (SSIES, SSIES-2 and SSIES-3) on Spacecraft of the Defense Meteorological Satellite Program. Environ Res Paper, 1994, No.1151Google Scholar
  26. 26.
    Heelis R A, Hanson W B. Measurement techniques in space plasmas. Geophys Monogr Ser, 1998, 61: 102Google Scholar
  27. 27.
    Zheng X Z, Zhang A B, Guan Y B. Research on retarding potential analyzer abroad CSES. Acta Phys Sin, 2017, 66: 079401Google Scholar
  28. 28.
    Marrese C M, Majumdar N, Haas J M. Development of a Singleorifice Retarding Potential Analyzer for Hall Thruster Plume Characterization. In: Proceedings of the 25th International Electric Propulsion conference. Cleveland, 1997, 24: 397–404Google Scholar
  29. 29.
    Dahl D A. 2000SIMION 3D version 7.0 user’s manual, INEEL-95/0403. Idaho: Idaho National Engineering and Environment LaboratoryGoogle Scholar
  30. 30.
    Maha S. QUASSIM. Inter-Calibration Between Plasma Instruments Onboard DEMETER. Plasma Science and Technology, 2008, 10: 539–545Google Scholar
  31. 31.
    Vannaroni G, Bruno R, Giammaria F, et al. “The INAF-IFSI Plasma Chamber. Technical Description”. INAF-IFSI-2009-18, 2009Google Scholar
  32. 32.
    Vannaroni G, Bruno R, Giammaria F, et al. “The INAF-IFSI Plasma Chamber. Ground-based ionospheric plasma simulation: Plasma parameter maps vs. magnetic field”. INAF-IFSI-2010-6, 2010Google Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chao Liu
    • 1
    • 3
  • Yibing Guan
    • 1
    • 3
  • Xiangzhi Zheng
    • 1
    • 3
  • Aibing Zhang
    • 1
    • 2
    • 3
  • Diego Piero
    • 4
  • Yueqiang Sun
    • 1
    • 3
  1. 1.National Space Science CenterChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Beijing Key Laboratory of Space Environment ExplorationBeijingChina
  4. 4.INAF-IAPSRomeItaly

Personalised recommendations