Advertisement

Stochastic averaging technique for SDOF strongly nonlinear systems with delayed feedback fractional-order PD controller

  • LinCong Chen
  • Xiao Liang
  • WeiQiu Zhu
  • YaoBing Zhao
Article

Abstract

A stochastic averaging technique is proposed to study the randomly excited single-degree-of-freedom (SDOF) strongly nonlinear systems with delayed feedback fractional-order proportional-derivative (PD) controller. The delayed feedback fractional-order PD control force is approximated by an equivalent non-delay feedback control force combining with a quasi-linear elastic force and a quasi-linear damping force. The averaged Itô stochastic differential equation for amplitude of the equivalent nonlinear system is derived by the generalized harmonic functions. The analytical stationary probability density function (PDF) is obtained with solving the reduced Fokker-Planck-Kolmogorov (FPK) equation. Two examples of van der Pol oscillator and Rayleigh-Duffing oscillator are studied to illustrate the application and effectiveness of the proposed method. Numerical results display that the proposed method can yield to the high precision, and the time delay could ruin the control effectiveness, but also even amplifies the response of the system more than that of uncontrolled system. Furthermore, the study finds that the parameters of fractional-order α and time delay may cause the stochastic P-bifurcation. It is indicated that the delayed feedback fractional-order PD controller can offer a potentially effective tool for anti-control of stochastic bifurcation

Keywords

stochastic averaging strongly nonlinear system time delay fractional-order PDα controller 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives— Theory and Applications. Amsterdam: Gordon and Breach Science Publishers, 1993zbMATHGoogle Scholar
  2. 2.
    Papoulia K D, Kelly J M. Visco-hyperelastic model for filled rubbers used in vibration isolation. J Eng Mater Technol, 1997, 119: 292–297CrossRefGoogle Scholar
  3. 3.
    Rossikhin Y A, Shitikova M V. Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl Mech Rev, 2010, 63: 010801CrossRefGoogle Scholar
  4. 4.
    Xie Y, Kang Y M, Liu Y, et al. Firing properties and synchronization rate in fractional-order Hindmarsh-Rose model neurons. Sci China Technol Sci, 2014, 57: 914–922CrossRefGoogle Scholar
  5. 5.
    Zhong G, Deng H, Li J. Chattering-free variable structure controller design via fractional calculus approach and its application. Nonlinear Dyn, 2015, 81: 679–694MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Liang Y S, Su W Y. Riemann-Liouville fractional calculus of 1-dimensional continuous functions. Sci Math, 2016, 46: 423–438Google Scholar
  7. 7.
    Oustaloup A. La Dérivation Non Entiere: Theorie, Synthese et Applications. Paris: Hermes, 1995zbMATHGoogle Scholar
  8. 8.
    Podlubny I. Fractional-order systems and PIλDμ-controllers. IEEE Trans Automat Contr, 1999, 44: 208–214MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Petráš I. Tuning and implementation methods for fractional-order controllers. Fractional Calculus Appl Anal, 2012, 15: 282–303MathSciNetzbMATHGoogle Scholar
  10. 10.
    Agrawal O P. A general formulation and solution scheme for fractional optimal control problems. NOnlinear Dyn, 2004, 38: 323–337MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Charef A, Assabaa M, Ladaci S, et al. Fractional-order high-gain output feedback control schemes. Int Control Theory Appl, 2013, 7: 822–828CrossRefGoogle Scholar
  12. 12.
    Shah P, Agashe S. Review of fractional PID controller. Mechatronics, 2016, 38: 29–41CrossRefGoogle Scholar
  13. 13.
    Zheng Y G, Wang Z H. Delayed Hopf bifurcation in time-delayed slow-fast systems. Sci China Technol Sci, 2010, 53: 656–663CrossRefzbMATHGoogle Scholar
  14. 14.
    Zhang L, Wang H L, Hu H Y. Global view of Hopf bifurcations of a van der Pol oscillator with delayed state feedback. Sci China Technol Sci, 2010, 53: 595–607CrossRefzbMATHGoogle Scholar
  15. 15.
    Wang Z H, Zheng Y G. The optimal form of the fractional-order difference feedbacks in enhancing the stability of a sdof vibration system. J Sound Vib, 2009, 326: 476–488CrossRefGoogle Scholar
  16. 16.
    Pop C I, Ionescu C, De Keyser R, et al. Robustness evaluation of fractional order control for varying time delay processes. SIViP, 2012, 6: 453–461CrossRefGoogle Scholar
  17. 17.
    Wen S F, Shen Y J, Yang S P, et al. Dynamical response of Mathieu- Duffing oscillator with fractional-order delayed feedback. Chaos Solitons Fractals, 2017, 94: 54–62MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Zhu W, Ying Z. Optimal nonlinear feedback control of quasi-Hamiltonian systems. Sci China Ser A-Math, 1999, 42: 1213–1219MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Xu W, Niu Y J, Rong H W, et al. p-moment stability of stochastic impulsive differential equations and its application in impulsive control. Sci China Ser E-Technol Sci, 2009, 52: 782–786MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wang Y, Ying Z G, Zhu W Q. Nonlinear stochastic optimal control of Preisach hysteretic systems. Probab Eng Mech, 2009, 24: 255–264CrossRefGoogle Scholar
  21. 21.
    Feng J, Zhu W Q, Ying Z G. Stochastic optimal control of partially observable nonlinear quasi-integrable Hamiltonian systems. Sci China- Phys Mech Astron, 2010, 53: 147–154CrossRefGoogle Scholar
  22. 22.
    Ling Q, Jin X L, Huang Z L. Stochastic stability of quasi-integrable Hamiltonian systems with time delay by using Lyapunov function method. Sci China Technol Sci, 2010, 53: 703–712CrossRefzbMATHGoogle Scholar
  23. 23.
    Wang Z Q, Xu Y, Yang H. Lévy noise induced stochastic resonance in an FHN model. Sci China Technol Sci, 2016, 59: 371–375Google Scholar
  24. 24.
    Li W, Liu L, Feng G. Cooperative control of multiple stochastic highorder nonlinear systems. Automatica, 2017, 82: 218–225MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zhao X, Shi P, Zheng X, et al. Adaptive tracking control for switched stochastic nonlinear systems with unknown actuator dead-zone. Automatica, 2015, 60: 193–200MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zhao X, Wang X, Zong G, et al. Adaptive neural tracking control for switched high-Order stochastic nonlinear systems. IEEE Trans Cybern, 2017, 47: 3088–3099CrossRefGoogle Scholar
  27. 27.
    Wang H, Liu P X, Niu B. Robust fuzzy adaptive tracking control for nonaffine stochastic nonlinear switching systems. IEEE Trans Cybern, 2018, 48: 2462–2471CrossRefGoogle Scholar
  28. 28.
    Liu Z H, Zhu W Q. Stochastic averaging of quasi-integrable Hamiltonian systems with delayed feedback control. J Sound Vib, 2007, 299: 178–195MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Feng C S, Zhu W Q. First-passage failure of harmonically and stochastically excited Duffing oscillator with delayed feedback control. Sci China Technol Sci, 2011, 54: 1072–1077CrossRefzbMATHGoogle Scholar
  30. 30.
    Liu Z H, Zhu W Q. Compensation for time-delayed feedback bangbang control of quasi-integrable Hamiltonian systems. Sci China Ser E-Technol Sci, 2009, 52: 688–697CrossRefzbMATHGoogle Scholar
  31. 31.
    Liu Z H, Zhu W Q. Time-delay stochastic optimal control and stabilization of quasi-integrable Hamiltonian systems. Probab Eng Mech, 2012, 27: 29–34CrossRefGoogle Scholar
  32. 32.
    Chen L C, Zhao T L, Li W, et al. Bifurcation control of bounded noise excited Duffing oscillator by a weakly fractional-order PID feedback controller. Nonlinear Dyn, 2016, 83: 529–539MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Li W, Chen L, Zhao J, et al. Reliability estimation of stochastic dynamical systems with fractional order PID controller. Int J Str Stab Dyn, 2018, 18: 1850083MathSciNetCrossRefGoogle Scholar
  34. 34.
    Xu Z, Cheung Y K. Averaging method using generalized harmonic functions for strongly non-linear oscillators. J Sound Vib, 1994, 174: 563–576MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zhu W Q, Huang Z L, Suzuki Y. Response and stability of strongly non-linear oscillators under wide-band random excitation. Int J Non- Linear Mech, 2001, 36: 1235–1250MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Hale J K. Averaging methods for differential equations with retarded arguments and a small parameter. J Differ Equ, 1966, 2: 57–73MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Khasminskii R Z. On the averaging principle for Itô stochastic differential equations. Kibernetka, 1968, 3: 260–279Google Scholar
  38. 38.
    Guckenheimer J, Holmes P. Nonlinear Oscillations: Dynamical Systems and Bifurcations of Vector Fields. New York: Springer-Verlag, 1983Google Scholar
  39. 39.
    Verhulst F. Nonlinear Differential Equation and Dynamical Systems. Berlin: Springer-Verlag, 1989Google Scholar
  40. 40.
    Atay F M. Van der Pol’s oscillator under delayed feedback. J Sound Vib, 1998, 218: 333–339MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • LinCong Chen
    • 1
  • Xiao Liang
    • 1
  • WeiQiu Zhu
    • 2
  • YaoBing Zhao
    • 1
  1. 1.College of Civil EngineeringHuaqiao UniversityXiamenChina
  2. 2.Departments of Mechanics, State Key Laboratory of Fluid Power Transmission and ControlZhejiang UniversityHangzhouChina

Personalised recommendations