Science China Technological Sciences

, Volume 61, Issue 5, pp 659–668 | Cite as

High precision magnetometer for geomagnetic exploration onboard of the China Seismo-Electromagnetic Satellite

  • BingJun Cheng
  • Bin Zhou
  • Werner Magnes
  • Roland Lammegger
  • Andreas Pollinger
Article
  • 37 Downloads

Abstract

The China Seismo-Electromagnetic Satellite (CSES) is the first platform of China’s earthquake observation system in space and the first satellite of China’s geophysical field detection missions. The high precision magnetometer (HPM), which contains two fluxgate sensors and a coupled dark state magnetometer (CDSM), measures the vector of the Earth’s magnetic field with a bandwidth from DC to 15 Hz. The two fluxgate sensors are in a gradiometer configuration in order to reduce satellite interferences. Additionally, the CDSM sensor measures the scalar value of the magnetic field with higher accuracy and stability. Several data processing and calibration methods have been prepared to get accurate vector magnetic field data. This includes the calibration of each of the three sensors, the absolute vector correction algorithm, the spacecraft magnetic interference elimination and the coordinate transformation method. Also the instrument performances based on ground calibration activities are shown in this article.

Keywords

magnetometer fluxgate magnetometer CPT magnetometer magnetometer calibration data processing 

References

  1. 1.
    Shen X, Zhang X, Wang L, et al. The earthquake-related disturbances in ionosphere and project of the first China seismo-electromagnetic satellite. Earthq Sci, 2011, 24: 639–650CrossRefGoogle Scholar
  2. 2.
    Thomas A P, Frederick F M, Lewis D E. The geomagnetic field and its measurement: Introduction and magnetic field satellite (MAGSAT) glossary. Johns Hopkins APL Tech Digest, 1980, 1: 161–170Google Scholar
  3. 3.
    Nielsen O V, Petersen J R, Primdahl F, et al. Development, construction and analysis of the “OErsted” fluxgate magnetometer. Meas Sci Technol, 1995, 6: 1099–1115CrossRefGoogle Scholar
  4. 4.
    Olsen N, Tøffner-Clausen L, Sabaka T J, et al. Calibration of the Ørsted vector magnetometer. Earth Planet Space, 2003, 55: 11–18CrossRefGoogle Scholar
  5. 5.
    Shen X H, Zhang X M, Yuan S G, et al. The state-of-the-art of the China seismo-electeomagnetic satellite mission. Sci China Tech Sci, 2018, 61: 634–642Google Scholar
  6. 6.
    Cao J B, Zeng L, Zhan F, et al. The electromagnetic wave experiment for CSES mission: search coil magnetometer. Sci China Tech Sci, 2018, 61: 653–658Google Scholar
  7. 7.
    Lin J, Shen X H, Wang L W. CSES GNSS ionospheric inversion technique, validation and error analysis. Sci China Tech Sci, 2018, 61: 669–677Google Scholar
  8. 8.
    Ambrosi G, Bartocci S, Basara L, et al. The HEPD particle detector of the CSES satellite mission for investigating seismo-associated perturbations of the Van Allen belts. Sci China Tech Sci, 2018, 61: 643–652Google Scholar
  9. 9.
    Wang L W, Shen X H, Zhang Y, et al. Developing progress of China seismo-electromagnetic satellite project. Acta Seismol Sin, 2016, 38: 376–385Google Scholar
  10. 10.
    Ding J H, Shen X H, Pan W Y, et al. Seiemo-electromagenetism precursor research progress. Chin J Radio Sci, 2006, 21: 791–800Google Scholar
  11. 11.
    Cheng B J, Zhou B, Magnes W, et al. Performance of the engineering model of the CSES high precision magnetometer. In: Proceeding of the IEEE Sensors, 2015. Busan, 2015. 1933–1936Google Scholar
  12. 12.
    Zhou B, Cheng B J, Zhang Y T, et al. Magnetic field detection method of China seismo-electromagnetic satellite. Chin J Space Sci, 2014, 34: 843–848Google Scholar
  13. 13.
    Lammegger R. Method and device for measuring magnetic fields. US Patent App. 12/664,782, 2008-06-12Google Scholar
  14. 14.
    Pollinger A, Ellmeier M, Magnes M, et al. Enable the inherent omnidirectionality of an absolute coupled dark state magnetometer for e.g. scientific space applications. In: Instrumentation & Measurement Technology Conference. Graz, 2012. 33–36Google Scholar
  15. 15.
    Pollinger A, Lammegger R, Magnes W, et al. Coupled dark state magnetometer for the China seismo-electromagnetic satellite. Measurement Sci Tech, 2018, in pressGoogle Scholar
  16. 16.
    Zhang Z Q, Li L, Zhou B, et al. A method of in-orbit calibration of fluxgate magnetometer based on the measurement of absolute scalar magnetometer. Chin J Space Sci, 2014, 34: 235–241Google Scholar
  17. 17.
    Chen S W. Control and measure of satellite magnetic cleanliness. Progr Geophys, 2009, 24: 797–800Google Scholar
  18. 18.
    von Yin F. Mathematic approaches for the calibration of the CHAMP satellite magnetic field measurements. Dissertation for Doctoral Degree. Potsdam: Institutional Repository of the University of Potsdam, 2009. 11–17Google Scholar
  19. 19.
    Narvaez P. The magnetostatic cleanliness program for the cassini spacecraft. Space Sci Rev, 2004, 114: 385–394CrossRefGoogle Scholar
  20. 20.
    Wang X F, Han X D, Yang C M. Method of earth’s magnetic field fluctuation compensated by Cs magnetometer. J Transducer Tech, 2004, 23: 47–49Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • BingJun Cheng
    • 1
  • Bin Zhou
    • 1
  • Werner Magnes
    • 2
  • Roland Lammegger
    • 3
  • Andreas Pollinger
    • 3
    • 2
  1. 1.National Space Science CenterChinese Academy of SciencesBeijingChina
  2. 2.Space Research InstituteAustrian Academy of SciencesGrazAustria
  3. 3.Institute of Experimental PhysicsGraz University of TechnologyGrazAustria

Personalised recommendations