Science China Technological Sciences

, Volume 61, Issue 5, pp 634–642 | Cite as

The state-of-the-art of the China Seismo-Electromagnetic Satellite mission

  • XuHui Shen
  • XueMin Zhang
  • ShiGeng Yuan
  • LanWei Wang
  • JinBin Cao
  • JianPing HuangEmail author
  • XingHong Zhu
  • Picozzo Piergiorgio
  • JianPing Dai


The China Seismo-Electromagnetic Satellite (CSES) mission was proposed in 2003 and approved in 2013 after ten years’ scientific and engineering demonstrations. To meet the requirement of scientific objectives, the satellite is designed to be in a sunsynchronous orbit with an altitude of 507 km and descending node time of 14:00 LT. The CSES satellite carries 8 instruments, including search-coil magnetometer (SCM), electric field detector (EFD), high precision magnetometer (HPM), GNSS occultation receiver (GOR), plasma analyzer package (PAP), langmuir probe (LAP), high energetic particle package (HEPP) and detector (HEPD), and tri-band beacon (TBB), among which HEPD is provided by Italian Space Agency. The CSES satellite was launched successfully on February 2, 2018, and is planned to operate for 5 years. The CSES mission is the first satellite in China to measure geophysical fields, which will have a lot of application prospects in the study of seismology, geophysics, space sciences, and so on.


China Seismo-Electromagnetic Satellite seismo-ionospheric disturbance lithosphere-atmosphere-ionosphere coupling geomagnetic fields ionosphere 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen Y T. Earthquake prediction: Retrospect and prospect (in Chinese). Sci China Ser D-Earth Sci, 2009, 39: 1633–1658Google Scholar
  2. 2.
    Geller R J, Jackson D D, Kagan Y Y, et al. Earthquakes cannot be predicted. Science, 1997, 275: 1616–1616CrossRefGoogle Scholar
  3. 3.
    Wyss M, Aceves R L, Park S K, et al. Cannot earthquakes be predicted? Science, 1997, 278: 487–490CrossRefGoogle Scholar
  4. 4.
    Zhang X, Shen X, Parrot M, et al. Phenomena of electrostatic perturbations before strong earthquakes (2005–2010) observed on DEMETER. Nat Hazards Earth Syst Sci, 2012, 12: 75–83CrossRefGoogle Scholar
  5. 5.
    Parrot M, Benoist D, Berthelier J J, et al. The magnetic field experiment IMSC and its data processing onboard DEMETER: Scientific objectives, description and first results. Planet Space Sci, 2006, 54: 441–455CrossRefGoogle Scholar
  6. 6.
    Gousheva M, Danov D, Hristov P, et al. Quasi-static electric fields phenomena in the ionosphere associated with pre- and post earthquake effects. Nat Hazards Earth Syst Sci, 2008, 8: 101–107CrossRefGoogle Scholar
  7. 7.
    Molchanov O A, Rozhnoi A, Solovieva M, et al. Global diagnostics of ionospheric perturbations associated with seismicity using VLF transmitter signals received on DEMETER satellite. Nat Hazard Earth Syst Sci, 2006, 6: 745–753CrossRefGoogle Scholar
  8. 8.
    Nemec F, Santolík O, Parrot M. Decrease of intensity of ELF/VLF waves observed in the upper ionosphere close to earthquakes: A statistical study. J Geophys Res, 2009, 114: A04303Google Scholar
  9. 9.
    Rozhnoi A, Solovieva M, Parrot M, et al. VLF/LF signal studies of the ionospheric response to strong seismic activity in the Far Eastern region combining the DEMETER and ground-based observations. Phys Chem Earth Parts A/B/C, 2015, 85–86: 141–149CrossRefGoogle Scholar
  10. 10.
    Zhang X, Zeren Z, Parrot M, et al. ULF/ELF ionospheric electric field and plasma perturbations related to Chile earthquakes. Adv Space Res, 2011, 47: 991–1000CrossRefGoogle Scholar
  11. 11.
    Zeren Z, Shen X H, Cao J B, et al. Statistical analysis of ELF/VLF magnetic field disturbances before major earthquakes. Chin J Geophys-Chin Ed, 2012, 55: 3699–3708Google Scholar
  12. 12.
    Zeren Z, Shen X H, Zhang X, et al. Possible ionospheric electromagnetic perturbations induced by the Ms7.1 Yushu Earthquake. Earth Moon Planets, 2012, 108: 231–241CrossRefGoogle Scholar
  13. 13.
    Shen X H, Zeren Z, Zhao S f, et al. VLF radio wave anomalies associated with the 2010 Ms7.1 Yushu earthquake. Adv Space Res, 2017, 59: 2636–2644CrossRefGoogle Scholar
  14. 14.
    Cai J T, Zhao G Z, Zhan Y, et al. The study on ionospheric disturbances during earthquakes (in Chinese). Progr Geophys, 2007, 22: 695–701Google Scholar
  15. 15.
    Parrot M. Statistical analysis of automatically detected ion density variations recorded by DEMETER and their relation to seismic activity. Ann Geophys, 2012, 55: 149–155Google Scholar
  16. 16.
    Parrot M, Berthelier J J, Lebreton J P, et al. Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions. Phys Chem Earth Parts A/B/C, 2006, 31: 486–495CrossRefGoogle Scholar
  17. 17.
    Ryu K, Lee E, Chae J S, et al. Seismo-ionospheric coupling appearing as equatorial electron density enhancements observed via DEMETER electron density measurements. J Geophys Res-Space Phys, 2014, 119: 8524–8542CrossRefGoogle Scholar
  18. 18.
    Yan R, Parrot M, Pinçon J L. Statistical study on variations of the ionospheric ion density observed by DEMETER and related to seismic activities. J Geophys Res-Space Phys, 2017, 122: 12,421–12,429CrossRefGoogle Scholar
  19. 19.
    Liu J, Zhang X, Novikov V, et al. Variations of ionospheric plasma at different altitudes before the 2005 Sumatra Indonesia Ms7.2 earthquake. J Geophys Res-Space Phys, 2016, 121: 9179–9187CrossRefGoogle Scholar
  20. 20.
    Shen X H, Zhang X, Liu J, et al. Analysis of the enhanced negative correlation between electron density and electron temperature related to earthquakes. Ann Geophys, 2015, 33: 471–479CrossRefGoogle Scholar
  21. 21.
    Shen X, Zhang X. The spatial distribution of hydrogen ions at topside ionosphere in local daytime. Terr Atmos Ocean Sci, 2017, 28: 1009–1017CrossRefGoogle Scholar
  22. 22.
    Tao D, Cao J, Battiston R, et al. Seismo-ionospheric anomalies in ionospheric TEC and plasma density before the 17 July 2006 M7.7 south of Java earthquake. Ann Geophys, 2017, 35: 589–598CrossRefGoogle Scholar
  23. 23.
    Zhang X M, Shen X H, Zhao S F, et al. The seismo-ionosperic monitoring technologies and their application research development (in Chinese with English abstract). Earthq Sci, 2016, 38: 356–375Google Scholar
  24. 24.
    Aleksandrin S Y, Galper A M, Grishantzeva L A, et al. High-energy charged particle bursts in the near-Earth space as earthquake precursors. Ann Geophys, 2003, 21: 597–602CrossRefGoogle Scholar
  25. 25.
    Sgrigna V, Carota L, Conti L, et al. Correlations between earthquakes and anomalous particle bursts from SAMPEX/PET satellite observations. J Atmos Sol-Terr Phys, 2005, 67: 1448–1462CrossRefGoogle Scholar
  26. 26.
    Tao D, Battiston R, Vitale V, et al. A new method to study the time correlation between Van Allen Belt electrons and earthquakes. Int J Remote Sens, 2016, 37: 5304–5319CrossRefGoogle Scholar
  27. 27.
    Fidani C, Battiston R. Analysis of NOAA particle data and correlations to seismic activity. Nat Hazards Earth Syst Sci, 2008, 8: 1277–1291CrossRefGoogle Scholar
  28. 28.
    Zhang X, Fidani C, Huang J, et al. Burst increases of precipitating electrons recorded by the DEMETER satellite before strong earthquakes. Nat Hazards Earth Syst Sci, 2013, 13: 197–209CrossRefGoogle Scholar
  29. 29.
    Pulinets S A, Boyarchuk K A. Ionospheric Precursors of Earthquakes. Berlin, Heidelberg, New York: Springer, 2004. 1–287Google Scholar
  30. 30.
    Nagano I, Mambo M, Hutatsuishi G. Numerical calculation of electromagnetic waves in an anisotropic multilayered medium. Radio Sci, 1975, 10: 611–617CrossRefGoogle Scholar
  31. 31.
    Zhao S F, Liao L, Zhang X. Trans-ionospheric VLF wave power absorption of terrestrial VLF signals (in Chinese with English abstract). Chin J Geophys, 2017, 60: 3004–3014Google Scholar
  32. 32.
    Shen X, Zhang X, Wang L, et al. The earthquake-related disturbances in ionosphere and project of the first China Seismo-Electromagnetic Satellite. Earthq Sci, 2011, 24: 639–650CrossRefGoogle Scholar
  33. 33.
    Zhao S F, Zhang X M, Zhao Z Y, et al. The numerical simulation on ionospheric perturbations in electric field before large earthquakes. Ann Geophys, 2014, 32: 1487–1493CrossRefGoogle Scholar
  34. 34.
    Nagano I, Rosen P A, Yagitani S, et al. Full wave analysis of the Australian omega signal observed by the Akebono Satellite. IEICE Transactions on Communications, 1993, 76: 1571–1578Google Scholar
  35. 35.
    Lehtinen N G, Inan U S. Full-wave modeling of transionoephtic propagation of VLF waves. Geophys Res Lett, 2009, 36: L03104CrossRefGoogle Scholar
  36. 36.
    Inan U S, Chang H C, Helliwell R A. Electron precipitation zones around major ground-based VLF signal sources. J Geophys Res, 1984, 89: 2891–2906CrossRefGoogle Scholar
  37. 37.
    Wang F, Zhao Z Y, Changh S S, et al. Radiation of ELF waves by ionospheric artificial modulation into a stratified ionosphere. Chin J Geophys, 2012, 55: 2167–2176Google Scholar
  38. 38.
    Sorokin V M, Chmyrev V M, Yaschenko A K. Electrodynamic model of the lower atmosphere and the ionosphere coupling. J Atmos Sol-Terr Phys, 2001, 63: 1681–1691CrossRefGoogle Scholar
  39. 39.
    Sorokin V M, Chmyrev V M, Yaschenko A K. Theoretical model of DC electric field formation in the ionosphere stimulated by seismic activity. J Atmos Sol-Terr Phys, 2005, 67: 1259–1268CrossRefGoogle Scholar
  40. 40.
    Kuo C L, Huba J D, Joyce G, et al. Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges. J Geophys Res, 2011, 116: A10317CrossRefGoogle Scholar
  41. 41.
    Kuo C L, Lee L C, Huba J D. An improved coupling model for the lithosphere-atmosphere-ionosphere system. J Geophys Res-Space Phys, 2014, 119: 3189–3205CrossRefGoogle Scholar
  42. 42.
    Zhou C, Liu Y, Zhao S, et al. An electric field penetration model for seismo-ionospheric research. Adv Space Res, 2017, 60: 2217–2232CrossRefGoogle Scholar
  43. 43.
    Hao Y Q, Xiao Z, Zhang D H. Multi-instrument observation on coseismic ionospheric effects after great Tohoku earthquake. J Geophys Res, 2012, 117: A02305Google Scholar
  44. 44.
    Ambrosi G, Bartocci S, Basara L, et al. Seismo-induced perturbations of the inner Van Allen belt: The particle detector of the CSES mission for the investigation. Sci China Tech Sci, 2018, doi: 10.1007/s11431-018-9234-9Google Scholar
  45. 45.
    Cao J B, Zeng L, Zan F, et al. The electromagnetic wave experiment for CSES mission: Search coil magnetometer. Sci China Tech Sci, 2018, doi: 10.1007/s11431-018-9241-7Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • XuHui Shen
    • 1
  • XueMin Zhang
    • 2
  • ShiGeng Yuan
    • 3
  • LanWei Wang
    • 1
  • JinBin Cao
    • 4
  • JianPing Huang
    • 1
    Email author
  • XingHong Zhu
    • 3
  • Picozzo Piergiorgio
    • 5
  • JianPing Dai
    • 6
  1. 1.Institute of Crustal DynamicsChina Earthquake AdministrationBeijingChina
  2. 2.Institute of Earthquake ScienceChina Earthquake AdministrationBeijingChina
  3. 3.DFH Satellite Co. Ltd.BeijingChina
  4. 4.School of Space and EnvironmentBeihang UniversityBeijingChina
  5. 5.Italian National Institute of Nuclear PhysicsRomaItaly
  6. 6.Beijing Special Engineering Design and Research InstituteBeijingChina

Personalised recommendations