Science China Technological Sciences

, Volume 61, Issue 5, pp 653–658 | Cite as

The electromagnetic wave experiment for CSES mission: Search coil magnetometer

  • JinBin CaoEmail author
  • Li Zeng
  • Feng Zhan
  • ZuoGui Wang
  • Yan Wang
  • Yu Chen
  • QingChun Meng
  • ZhanQiang Ji
  • PengFei Wang
  • ZhongWei Liu
  • LingYu Ma


The seismic activities on the Earth can produce a disturbance of the electromagnetic field and particles in the ionosphere. The search coil magnetometer (SCM) mounted on China Seismo-Electromagnetic satellite (CSES) is designed to measure the magnetic field fluctuation of low frequency electromagnetic waves in the frequency range of 10 Hz–20 kHz. The SCM comprises a three-axis search coil sensor mounted on a 4.5 m boom and an electronic box inside satellite module. The sampling rate of the SCM is 51.2 kHz and the time resolution of the power spectrum density (PSD) is 2 s. The frequency resolution is 12.5 Hz. There are three operation modes: survey, detailed survey and calibration. In the survey mode, the SCM can provide a PSD in the whole frequency range of 10 Hz–20 kHz and wave forms in the low frequency range below 2 kHz while in the detailed survey mode the SCM can provide both PSD and wave forms in the whole frequency range of 10 Hz–20 kHz. The sensitivity of the SCM instrument is 5.0×10−4 nT Hz−1/2 at 10 Hz, 5.0×10−5 nT Hz−1/2 at 200 Hz, 3.4×10−5 nT Hz−1/2 at 2 kHz and 1.1×10−4 nT Hz−1/2 at 20 kHz. The telemetry rate is ∼0.85 Mbps in the survey mode and ∼3.0 Mbps in the detailed survey mode. The phase difference between three axes can be made generally with a precision of less than 1.0°. The dynamic range of the SCM instrument is over 100 dB. The orthogonality of three mechanical axes of search coil senor is better than 0.13°. The performance of SCM can satisfy the requirement of scientific objectives of CSES mission.


search coil magnetometer CSES electromagnetic wave earthquake precursor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Parrot M. Statistical study of ELF/VLF emissions recorded by a low-altitude satellite during seismic events. J Geophys Res, 1994, 99: 23339–23347CrossRefGoogle Scholar
  2. 2.
    Hobara Y, Lefeuvre F, Parrot M, et al. Low-latitude ionospheric turbulence observed by Aureol-3 satellite. Ann Geophys, 2005, 23: 1259–1270CrossRefGoogle Scholar
  3. 3.
    Molchanov O, Rozhnoi A, Solovieva M, et al. Global diagnostics of the ionospheric perturbations related to the seismic activity using the VLF radio signals collected on the DEMETER satellite. Nat Hazards Earth Syst Sci, 2006, 6: 745–753CrossRefGoogle Scholar
  4. 4.
    Němec F, Santolík O, Parrot M. Decrease of intensity of ELF/VLF waves observed in the upper ionosphere close to earthquakes: A statistical study. J Geophys Res, 2009, 114: A04303Google Scholar
  5. 5.
    Zhang X, Zeren Z, Parrot M, et al. ULF/ELF ionospheric electric field and plasma perturbations related to Chile earthquakes. Adv Space Res, 2011, 47: 991–1000CrossRefGoogle Scholar
  6. 6.
    Zeren Z, Shen X H, Cao J B, et al. Statistical analysis of ELF/VLF magnetic field disturbances before major earthquakes. Chin J Geophys-Chin Ed, 2012, 55: 3699–3708Google Scholar
  7. 7.
    Zeren Z, Shen X H, Zheng X M, et al. Possible ionospheric electromagnetic perturbations induced by the Ms7.1 Yushu earthquake. Earth Moon Planets, 2012, 108: 231–241CrossRefGoogle Scholar
  8. 8.
    Shen X, Zeren Z, Zhao S, et al. VLF radio wave anomalies associated with the 2010 Ms 7.1 Yushu earthquake. Adv Space Res, 2017, 59: 2636–2644CrossRefGoogle Scholar
  9. 9.
    Henderson T R, Sonwalkar V S, Helliwell R A, et al. A search for ELF/VLF emissions induced by earthquakes as observed in the ionosphere by the DE 2 satellite. J Geophys Res, 1993, 98: 9503–9514CrossRefGoogle Scholar
  10. 10.
    Rodger C J, Thomson N R, Dowden R L. A search for ELF/VLF activity associated with earthquakes using ISIS satellite data. J Geophys Res, 1996, 101: 13369–13378CrossRefGoogle Scholar
  11. 11.
    Clilverd M A, Rodger C J, Thomson N R. Investigating seismoionospheric effects on a long subionospheric path. J Geophys Res, 2009, 104: 28171–28179CrossRefGoogle Scholar
  12. 12.
    LeDocq M J, Gurnett D A, Hospodarsky G B. Chorus source locations from VLF Poynting flux measurements with the Polar spacecraft. Geophys Res Lett, 1998, 25: 4063–4066CrossRefGoogle Scholar
  13. 13.
    Masson A, Inan U S, Laakso H, et al. Cluster observations of mid-latitude hiss near the plasmapause. Ann Geophys, 2004, 22: 2565–2575CrossRefGoogle Scholar
  14. 14.
    Meredith N P, Horne R B, Thorne R M, et al. Substorm dependence of plasmaspheric hiss. J Geophys Res, 2004, 109: A06209CrossRefGoogle Scholar
  15. 15.
    Santolík O, Gurnett D A, Pickett J S. Multipoint investigation of the source region of storm-time chorus. Ann Geophys, 2004, 22: 2555–2563CrossRefGoogle Scholar
  16. 16.
    Wei X H, Cao J B, Zhou G C, et al. Cluster observations of waves in the whistler frequency range associated with magnetic reconnection in the Earth’s magnetotail. J Geophys Res, 2007, 112: A10225CrossRefGoogle Scholar
  17. 17.
    Yang J Y, Cao J B, Yan C X, et al. The mid-high latitude whistler mode chorus waves observed around substorm onsets. Sci China Ser E-Tech Sci, 2008, 51: 1648–1658CrossRefGoogle Scholar
  18. 18.
    Fu H S, Cao J B, Zong Q G, et al. The role of electrons during chorus intensification: Energy source and energy loss. J Atmos Sol-Terr Phys, 2012, 80: 37–47CrossRefGoogle Scholar
  19. 19.
    Fu H S, Cao J B, Mozer F S, et al. Chorus intensification in response to interplanetary shock. J Geophys Res, 2012, 117: A01203Google Scholar
  20. 20.
    Cao J B, Wei X H, Duan A Y, et al. Slow magnetosonic waves detected in reconnection diffusion region in the Earth’s magnetotail. J Geophys Res Space Phys, 2013, 118: 1659–1666CrossRefGoogle Scholar
  21. 21.
    Li L Y, Yu J, Cao J B, et al. Rapid loss of the plasma sheet energetic electrons associated with the growth of whistler mode waves inside the bursty bulk flows. J Geophys Res Space Phys, 2013, 118: 7200–7210CrossRefGoogle Scholar
  22. 22.
    Zeren Z, Cao J B, Liu W L, et al. Storm time evolution of ELF/VLF waves observed by DEMETER satellite. J Geophys Res Space Phys, 2014, 119: 2612–2622CrossRefGoogle Scholar
  23. 23.
    Yu J, Li L Y, Cao J B, et al. Propagation characteristics of plasmaspheric hiss: Van Allen Probe observations and global empirical models. J Geophys Res Space Phys, 2017, 122: 4156–4167CrossRefGoogle Scholar
  24. 24.
    Hayakawa M, Kasahara Y, Nakamura T, et al. A statistical study on the correlation between lower ionospheric perturbations as seen by subionospheric VLF/LF propagation and earthquakes. J Geophys Res, 2010, 115: A09305CrossRefGoogle Scholar
  25. 25.
    Maurya A K, Singh R, Veenadhari B, et al. Sub-ionospheric very low frequency perturbations associated with the 12 May 2008 M = 7.9 Wenchuan earthquake. Nat Hazards Earth Syst Sci, 2013, 13: 2331–2336CrossRefGoogle Scholar
  26. 26.
    Rozhnoi A, Solovieva M, Parrot M, et al. VLF/LF signal studies of the ionospheric response to strong seismic activity in the Far Eastern region combining the DEMETER and ground-based observations. Phys Chem Earth Parts A/B/C, 2015, 85–86: 141–149CrossRefGoogle Scholar
  27. 27.
    Battiston R, Vitale V. First evidence for correlations between electron fluxes measured by NOAA-POES satellites and large seismic events. Nucl Phys B-Proc Supp, 2013, 243–244: 249–257CrossRefGoogle Scholar
  28. 28.
    Tao D, Battiston R, Vitale V, et al. A new method to study the time correlation between Van Allen Belt electrons and earthquakes. Int J Remote Sens, 2016, 37: 5304–5319CrossRefGoogle Scholar
  29. 29.
    Li L, Cao J, Zhou G. Combined acceleration of electrons by whistler-mode and compressional ULF turbulences near the geosynchronous orbit. J Geophys Res, 2005, 110: A03203CrossRefGoogle Scholar
  30. 30.
    Li L Y, Yu J, Cao J B, et al. Roles of whistler mode waves and magnetosonic waves in changing the outer radiation belt and the slot region. J Geophys Res Space Phys, 2017, 122: 5431–5448CrossRefGoogle Scholar
  31. 31.
    Fu H S, Cao J B, Cully C M, et al. Whistler-mode waves inside flux pileup region: Structured or unstructured? J Geophys Res Space Phys, 2014, 119: 9089–9100CrossRefGoogle Scholar
  32. 32.
    Yu J, Li L Y, Cao J B, et al. Multiple loss processes of relativistic electrons outside the heart of outer radiation belt during a storm sudden commencement. J Geophys Res Space Phys, 2015, 120: 10275–10288CrossRefGoogle Scholar
  33. 33.
    Cao J B, Liu Z X, Yang J Y, et al. First results of low frequency electromagnetic wave detector of TC-2/Double Star program. Ann Geophys, 2005, 23: 2803–2811CrossRefGoogle Scholar
  34. 34.
    Cornilleau-Wehrlin N, Alleyne H S, Yearby K H, et al. The STAFFDWP wave instrument on the DSP equatorial spacecraft: Description and first results. Ann Geophys, 2005, 23: 2785–2801CrossRefGoogle Scholar
  35. 35.
    Séran H C, Fergeau P. An optimized low-frequency three-axis search coil magnetometer for space research. Rev Sci Instrum, 2005, 76: 044502CrossRefGoogle Scholar
  36. 36.
    Parrot M, Benoist D, Berthelier J J, et al. The magnetic field experiment IMSC and its data processing onboard DEMETER: Scientific objectives, description and first results. Planet Space Sci, 2006, 54: 441–455CrossRefGoogle Scholar
  37. 37.
    Coillot C, Moutoussamy J, Leroy P, et al. Improvements on the design of search coil magnetometer for space experiments. Sensor Lett, 2007, 5: 167–170CrossRefGoogle Scholar
  38. 38.
    Grosz A, Paperno E, Amrusi S, et al. Minimizing crosstalk in three-axial induction magnetometers. Rev Sci Instrum, 2010, 81: 125106CrossRefGoogle Scholar
  39. 39.
    Grosz A, Paperno E, Amrusi S, et al. A three-axial search coil magnetometer optimized for small size, low power, and low frequencies. IEEE Sensor J, 2011, 11: 1088–1094CrossRefGoogle Scholar
  40. 40.
    Kasaba Y, Bougeret J L, Blomberg L G, et al. The Plasma Wave Investigation (PWI) onboard the BepiColombo/MMO: First measurement of electric fields, electromagnetic waves, and radio waves around Mercury. Planet Space Sci, 2010, 58: 238–278CrossRefGoogle Scholar
  41. 41.
    Paperno E, Grosz A, Amrusi S, et al. Compensation of crosstalk in three-axial induction magnetometers. IEEE Trans Instrum Meas, 2011, 60: 3416–3422CrossRefGoogle Scholar
  42. 42.
    Le Contel O, Leroy P, Roux A, et al. The search-coil magnetometer for MMS. Space Sci Rev, 2016, 199: 257–282CrossRefGoogle Scholar
  43. 43.
    Torbert R B, Russell C T, Magnes W, et al. The FIELDS instrument suite on MMS: Scientific objectives, measurements, and data products. Space Sci Rev, 2016, 199: 105–135CrossRefGoogle Scholar
  44. 44.
    Shen X H, Zhang X M, Yuan S G, et al. The state-of-the-art of the China seismo-electeomagnetic satellite mission. Sci China Tech Sci, 2018, 61: 634–642Google Scholar
  45. 45.
    Chen B J, Zhou B, Magnes W, et al. High precision magnetometer for geomagnetic exploration in China seismo-electromagnetic satellite. Sci China Tech Sci, 2018, 61: 659–668Google Scholar
  46. 46.
    Lin J, Shen X H, Wang L W. CSES GNSS ionospheric inversion technique, validation and error analysis. Sci China Tech Sci, 2018, 61: 669–677Google Scholar
  47. 47.
    Ambrosi G, Bartocci S, Basara L, et al. Seismo-induced perturbations of the inner Van Allen belt: The particle detector of the CSES mission for the investigation. Sci China Tech Sci, 2018, 61: 643–652Google Scholar
  48. 48.
    Cao J B, Yang J Y, Yuan S G, et al. In-flight observations of electromagnetic interferences emitted by satellite. Sci China Ser E-Tech Sci, 2009, 52: 2112–2118CrossRefGoogle Scholar
  49. 49.
    Santolík O, Němec F, Parrot M, et al. Analysis methods for multi-component wave measurements on board the DEMETER spacecraft. Planet Space Sci, 2006, 54: 512–527CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • JinBin Cao
    • 1
    Email author
  • Li Zeng
    • 1
  • Feng Zhan
    • 2
  • ZuoGui Wang
    • 1
  • Yan Wang
    • 1
  • Yu Chen
    • 1
  • QingChun Meng
    • 3
  • ZhanQiang Ji
    • 2
  • PengFei Wang
    • 1
  • ZhongWei Liu
    • 2
  • LingYu Ma
    • 2
  1. 1.School of Space and EnvironmentBeihang UniversityBeijingChina
  2. 2.Shandong Institute of Space Electronic TechnologyYantaiChina
  3. 3.School of AstronauticsBeihang UniversityBeijingChina

Personalised recommendations