Design optimization of multilayer perceptron neural network by ant colony optimization applied to engine emissions data

  • José Martínez-MoralesEmail author
  • Héctor Quej-Cosgaya
  • José Lagunas-Jiménez
  • Elvia Palacios-Hernández
  • Jorge Morales-Saldaña


A multilayer perceptron (MLP) artificial neural network (ANN) model has been optimized by the multi-objective ant colony optimization (MOACO) algorithm, which uses three objective functions. A sensitivity analysis to choose MOACO parameter values is carried out by calculating hypervolume metric, and the proposed approach adopts the Vlsekriterijumska Optimizacija I Kompromisno Resenje (VIKOR) decision method to choose final compromised solution on the Pareto front obtained from MOACO. As a result, we used the MLP-MOACO developed model to estimate the value of engine emissions of NOx in a four stroke, spark ignition (SI) gasoline engine and observed acceptable correlation coefficient (R2) of 0.99978.

ant colony optimization multilayer perceptron artificial neural networks hypervolume engine, emissions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liu K, Zhu H, Lü J. Cooperative stabilization of a class of lti plants with distributed observers. IEEE Trans Circuits Syst I, 2017, 64: 1891–1902MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chen Y, Lü J. Delay-induced discrete-time consensus. Automatica, 2017, 85: 356–361MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Shaghaghi E, Jabbarpour M R, Md Noor R, et al. Adaptive green traffic signal controlling using vehicular communication. Front Inf Technol Electron Eng, 2017, 18: 373–393CrossRefGoogle Scholar
  4. 4.
    Zhang J, Liu Y. Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines. Front Inf Technol Electron Eng, 2017, 18: 272–286CrossRefGoogle Scholar
  5. 5.
    Feng D, Xiao M, Liu Y, et al. Finite-sensor fault-diagnosis simulation study of gas turbine engine using information entropy and deep belief networks. Front Inf Technol Electron Eng, 2016, 17: 1287–1304CrossRefGoogle Scholar
  6. 6.
    Feng J, Liu Z, Wu C, et al. AVE: Autonomous vehicular edge computing framework with ACO-based scheduling. IEEE Trans Veh Technol, 2017, 66: 10660–10675CrossRefGoogle Scholar
  7. 7.
    Zhang X, Wu Z, Hu X, et al. Trajectory optimization-based auxiliary power unit control strategy for an extended range electric vehicle. IEEE Trans Veh Technol, 2017, 66: 10866–10874CrossRefGoogle Scholar
  8. 8.
    Pei J Z, Su Y X, Zhang D H. Fuzzy energy management strategy for parallel HEV based on pigeon-inspired optimization algorithm. Sci China Technol Sci, 2017, 60: 425–433CrossRefGoogle Scholar
  9. 9.
    Meseguer J, Toh C, Calafate C, et al. Driving styles: A mobile platform for driving styles and fuel consumption characterization. J Commun Netw, 2017, 19: 162–168CrossRefGoogle Scholar
  10. 10.
    Sakthivel G, Snehitkumar B, Ilangkumaran M. Application of fuzzy logic in internal combustion engines to predict the engine performance. Int J Ambient Energy, 2016, 37: 273–283CrossRefGoogle Scholar
  11. 11.
    Deb M, Majumder P, Majumder A, et al. Application of artificial intelligence (AI) in characterization of the performance-emission profile of a single cylinder CI engine operating with hydrogen in dual fuel mode: An ANN approach with fuzzy-logic based topology optimization. Int J Hydrogen Energy, 2016, 41: 14330–14350CrossRefGoogle Scholar
  12. 12.
    He G Z, Xie H, He S J. Overall efficiency optimization of controllable mechanical turbo-compounding system for heavy duty diesel engines. Sci China Technol Sci, 2017, 60: 36–50CrossRefGoogle Scholar
  13. 13.
    Ling X C, Wu F, Yao D W. A reduced combustion kinetic model for the methanol-gasoline blended fuels on SI engines. Sci China Technol Sci, 2016, 59: 81–92CrossRefGoogle Scholar
  14. 14.
    Martinez-Morales J D, Palacios-Hernández E R, Velázquez-Carrillo G A. Artificial neural network based on genetic algorithm for emissions prediction of a SI gasoline engine. J Mech Sci Technol, 2014, 28: 2417–2427CrossRefGoogle Scholar
  15. 15.
    Martinez-Morales J D, Palacios-Hernández E R, Velázquez-Carrillo G A. Modeling engine fuel consumption and NOx with RBF neural network and MOPSO algorithm. Int J Automot Technol, 2015, 16: 1041–1049CrossRefGoogle Scholar
  16. 16.
    Kannan G R, Balasubramanian K R, Anand R. Artificial neural network approach to study the effect of injection pressure and timing on diesel engine performance fueled with biodiesel. Int J Automot Technol, 2013, 14: 507–519CrossRefGoogle Scholar
  17. 17.
    Ilangkumaran M, Sakthivel G, Nagarajan G. Artificial neural network approach to predict the engine performance of fish oil biodiesel with diethyl ether using back propagation algorithm. Int J Ambient Energy, 2016, 37: 446–455CrossRefGoogle Scholar
  18. 18.
    Niu X, Yang C, Wang H, et al. Investigation of ANN and SVM based on limited samples for performance and emissions prediction of a CRDI-assisted marine diesel engine. Appl Thermal Eng, 2017, 111: 1353–1364CrossRefGoogle Scholar
  19. 19.
    Shi D H, Wang S H, Pisu P, et al. Modeling and optimal energy management of a power split hybrid electric vehicle. Sci China Technol Sci, 2017, 60: 713–725CrossRefGoogle Scholar
  20. 20.
    Muralidharan K, Vasudevan D. Applications of artificial neural networks in prediction of performance, emission and combustion characteristics of variable compression ratio engine fuelled with waste cooking oil biodiesel. J Braz Soc Mech Sci Eng, 2015, 37: 915–928CrossRefGoogle Scholar
  21. 21.
    Ahmed T, Lim O. A two stroke free piston engine’s performance and exhaust emission using artificial neural networks. J Mech Sci Technol, 2016, 30: 4747–4755CrossRefGoogle Scholar
  22. 22.
    Rahimi-Gorji M, Ghajar M, Kakaee A H, et al. Modeling of the air conditions effects on the power and fuel consumption of the SI engine using neural networks and regression. J Braz Soc Mech Sci Eng, 2017, 39: 375–384CrossRefGoogle Scholar
  23. 23.
    Channapattana S V, Pawar A A, Kamble P G. Optimisation of operating parameters of DI-CI engine fueled with second generation Biofuel and development of ANN based prediction model. Appl Energy, 2017, 187: 84–95CrossRefGoogle Scholar
  24. 24.
    Karthickeyan V, Balamurugan P, Rohith G, et al. Developing of ANN model for prediction of performance and emission characteristics of VCR engine with orange oil biodiesel blends. J Braz Soc Mech Sci Eng, 2017, 39: 2877–2888CrossRefGoogle Scholar
  25. 25.
    Jiang Y Y, Xiang J W, Li B, et al. A hybrid multiple damages detection method for plate structures. Sci China Technol Sci, 2017, 60: 726–736CrossRefGoogle Scholar
  26. 26.
    Lee M C. Effects of H2/CO/CH4 syngas composition variation on the NOx and CO emission characteristics in a partially-premixed gas turbine combustor. Sci China Technol Sci, 2016, 59: 1804–1813CrossRefGoogle Scholar
  27. 27.
    Hagan M, Demuth H, Beale M. Neural Network Design. Boston: PWS Publising Company, 1996Google Scholar
  28. 28.
    Demuth H, Beale M. Hagan M. Neural Network Toolbox TM 6 User’s Guide. Natick: The Math Works Inc., 2008Google Scholar
  29. 29.
    Hagan M T, Menhaj M B. Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw, 1994, 5: 989–993CrossRefGoogle Scholar
  30. 30.
    Chiam S, Tan K, Mamun A. Multiobjective Evolutionary Neural Networks for Time Series Forecasting. In: Obayashi S, Deb K, Poloni C, et al, eds. Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, 2007, 4403: 346–360Google Scholar
  31. 31.
    Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B, 1996, 26: 29–41CrossRefGoogle Scholar
  32. 32.
    Doerner K, Gutjahr W J, Hartl R F, et al. Pareto ant colony optimization: A metaheuristic approach to multiobjective portfolio selection. Ann Operations Res, 2004, 131: 79–99MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Coello C, Lamont G, Van D. Evolutionary Algorithms for Solving Multi-Objective Problems. New York: Springer, 2007zbMATHGoogle Scholar
  34. 34.
    Opricovic S, Tzeng G H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur J Operational Res, 2004, 156: 445–455CrossRefzbMATHGoogle Scholar
  35. 35.
    Vapnik V. Statistical Learning Theory. New York: Wiley-Interscience, 1998zbMATHGoogle Scholar
  36. 36.
    Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Trans Evol Computat, 1999, 3: 257–271CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • José Martínez-Morales
    • 1
    Email author
  • Héctor Quej-Cosgaya
    • 1
  • José Lagunas-Jiménez
    • 1
  • Elvia Palacios-Hernández
    • 2
  • Jorge Morales-Saldaña
    • 3
  1. 1.Faculty of EngineeringAutonomous University of CampecheCampecheMéxico
  2. 2.Faculty of SciencesAutonomous University of San Luis PotosíSan Luis PotosíMéxico
  3. 3.Faculty of EngineeringAutonomous University of San Luis PotosíSan Luis PotosíMéxico

Personalised recommendations